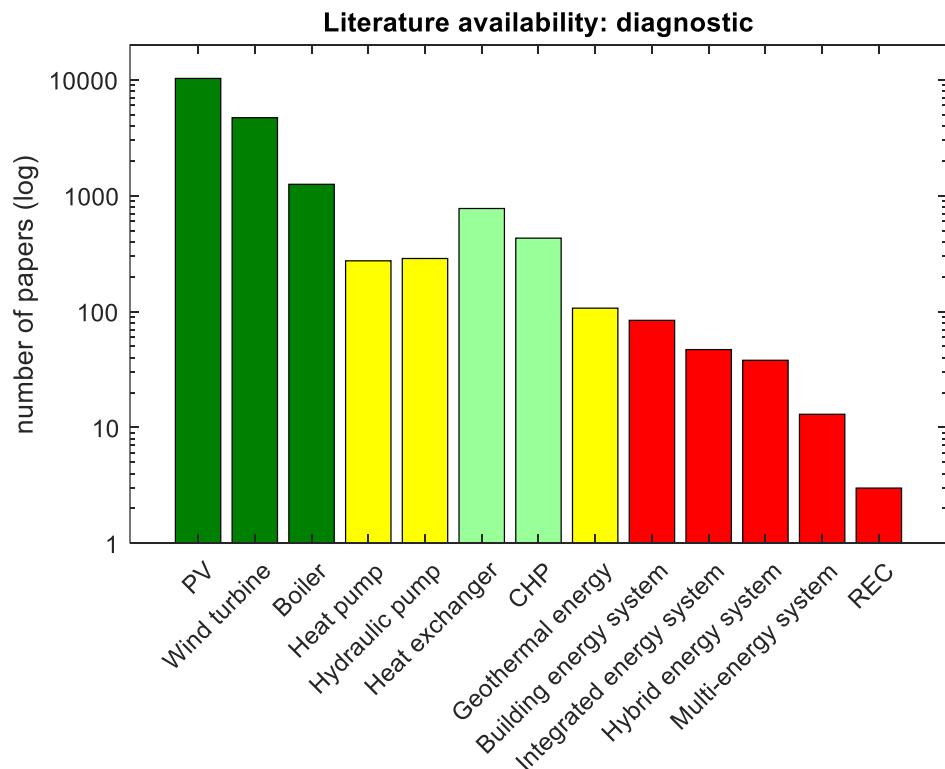


14/07/2025

Meeting online

Stato di avanzamento delle attività di ricerca di IN⁴



WP 2

ANALISI DELLO STATO DELL'ARTE

Available papers

- Research source: Science Direct
- Keywords:
 - "fault detection", "diagnostic", "FDD", and "diagnosis"

List of available projects

- Research source: Cordis

Project	Duration	Focus
Energynius	2019-2021	Design and management of integrated energy systems
WEDISTRICT	2019-2023	Integration of multiple sources of renewable energy and excess heat at three demonstration sites
ESPON TANDEM	2024-2028	Creation of the largest EU-backed database of energy communities
ASCEND	2023-2027	Implementation of PCED (Positive clean energy district) in multiple cities
D4Heat	2024-2027	Data-driven diagnosis of district heating substations

	Component	Types of fault	Diagnostic methodology	Literature gap
Energy production & storage	Heat pump	✓	✓	✓
	Boiler	✓	✓	
	CHP	✓	✓	
	PV			
	Battery			
	Absorption chiller			
	Compression chiller			
Energy distribution	District heating network	✓	✓	✓
	District cooling network	✓	✓	✓
	Pump	✓	✓	
	Power grid			

Thermal energy	
Electrical energy	
Cooling energy	

Legend
In depth analyzed by IN⁴ ✓

Types of faults

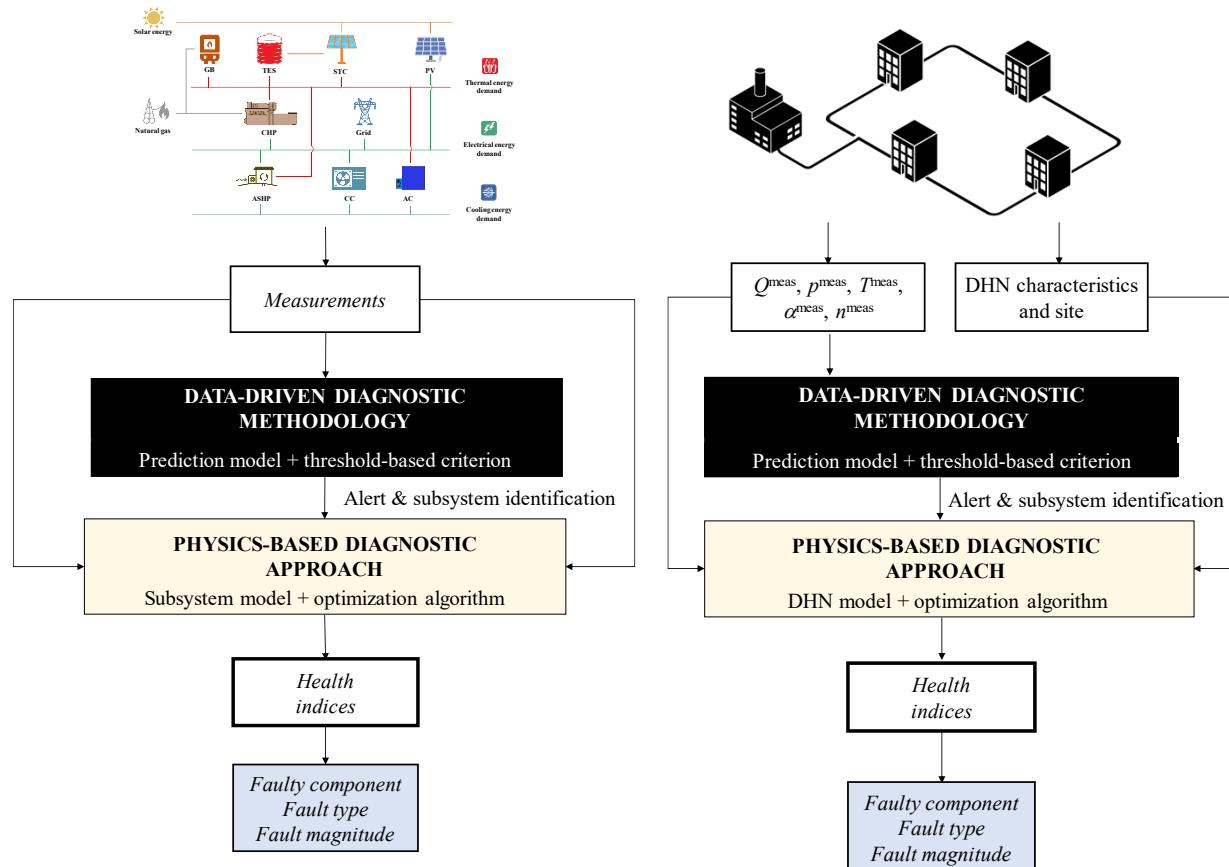
Fault	Impact	Reference
Refrigerant Undercharge	COP drop, increased discharge temp, compressor risk	[1-8]
Refrigerant Overcharge	Increased compressor work, possible liquid slugging	[2-5, 9-15]
Non-condensable Gas	Increases pressure, Thermal expansion valve malfunction	[10, 15-17]
Liquid Line Restriction	Flow drop, temperature anomalies	[7, 9, 11, 13, 14, 16, 18-20]
Heat Exchanger Fouling	Reduced heat transfer, pressure drops	[4, 10, 12, 13, 20-23]
Compressor Valve Leakage	Flow rate drop, increased suction pressure	[4, 6, 14, 20]
4-way Valve Leakage	Refrigerant bypass, COP drop	[16, 17, 21, 24]
Sensor Faults	False diagnostics, compromised controls	[17, 25]

Diagnostic methodologies

Model category	Examples	Reference
Physics-based	<ul style="list-style-type: none"> Thermodynamic analysis UA factor and LMTD modification Energy balance equation Refrigerant state correlations 	[26-30]
Data-driven	<ul style="list-style-type: none"> ANN SVM PCA Bayesian network tree-based model 	[26, 27, 31]
Hybrid	A combination of data-driven and physics-based models	[32, 33]

Literature gap

- Limited availability of FDD methods for multiple simultaneous faults
- Few methods with realistic reproduction of faults
- Limited literature regarding reversible heat pumps


- [1] T. Nowak, "Heat Pumps: Integrating technologies to decarbonise heating and cooling," 2018.
- [2] W. Kim and J. E. Braun, "Development, implementation, and evaluation of a fault detection and diagnostics system based on integrated virtual sensors and fault impact models," *Energy Build*, vol. 228, p. 110368, Dec. 2020, doi: 10.1016/J.ENBUILD.2020.110368.
- [3] T. M. Rossi and J. E. Braun, "A Statistical, Rule-Based Fault Detection and Diagnostic Method for Vapor Compression Air Conditioners," *HVAC&R Res*, vol. 3, no. 1, pp. 19–37, Jan. 1997, doi: 10.1080/10789669.1997.10391359.
- [4] M. S. Breuker and J. E. Braun, "Common Faults and Their Impacts for Rooftop Air Conditioners," *HVAC&R Res*, vol. 4, no. 3, pp. 303–318, Jul. 1998, doi: 10.1080/10789669.1998.10391406.
- [5] M. Mehrabi and D. Yuill, "Generalized effects of refrigerant charge on normalized performance variables of air conditioners and heat pumps," *International Journal of Refrigeration*, vol. 76, pp. 367–384, Apr. 2017, doi: 10.1016/J.IJREFRIG.2017.02.014.
- [6] H. Li and J. Braun, "A Methodology for Diagnosing Multiple Simultaneous Faults in Vapor-Compression Air Conditioners," *HVAC&R Res*, vol. 13, pp. 369–395, Mar. 2007, doi: 10.1080/10789669.2007.10390959.
- [7] D. P. Yuill and J. E. Braun, "Evaluating the performance of fault detection and diagnostics protocols applied to air-cooled unitary air-conditioning equipment," *HVAC&R Res*, vol. 19, no. 7, pp. 882–891, Oct. 2013, doi: 10.1080/10789669.2013.808135.
- [8] D. Yuill, H. Cheung, D. P. Yuill, J. E. Braun, and R. W. Herrick, "Evaluating Fault Detection and Diagnostics Tools by Simulation Results of Multiple Vapor Compression Systems Evaluation of Fault Detection and Diagnostics Tools by Simulation Results of Multiple Vapor Compression Systems." [Online]. Available: <https://www.researchgate.net/publication/271909972>
- [9] J. E. Braun, "Automated fault detection and diagnostics for vapor compression cooling equipment," *Journal of Solar Energy Engineering, Transactions of the ASME*, vol. 125, no. 3, pp. 266 – 274, 2003, doi: 10.1115/1.1591001.
- [10] Y. Hu, D. P. Yuill, S. A. Rooholghodos, A. Ebrahimifakhar, and Y. Chen, "Impacts of simultaneous operating faults on cooling performance of a high efficiency residential heat pump," *Energy Build*, vol. 242, p. 110975, Jul. 2021, doi: 10.1016/J.ENBUILD.2021.110975.
- [11] H. Li and J. E. Braun, "Virtual Refrigerant Pressure Sensors for Use in Monitoring and Fault Diagnosis of Vapor-Compression Equipment," *HVAC&R Res*, vol. 15, no. 3, pp. 597–616, May 2009, doi: 10.1080/10789669.2009.10390853.
- [12] I. Bellanco, F. Belío, M. Vallés, R. Gerber, and J. Salom, "Common fault effects on a natural refrigerant, variable-speed heat pump," *International Journal of Refrigeration*, vol. 133, pp. 29–266, Jan. 2022, doi: 10.1016/J.IJREFRIG.2021.10.017.
- [13] B. Chen, J. E. Braun, B. Chen, and J. E. Braun, "Purdue e-Pubs Simple Fault Detection and Diagnosis Methods for Packaged Air Conditioners Simple Fault Detection And Diagnosis Methods for Packaged Air Conditioners." [Online]. Available: <http://docs.lib.purdue.edu/iracc/498>
- [14] D. C. Lee, M. Lee, W. Cho, and Y. Kim, "Performance improvement of heat pumps by optimizing refrigerant charge using novel variable liquid-line length system," *Appl Therm Eng*, vol. 196, p. 117287, Sep. 2021, doi: 10.1016/J.APPLTHERMALENG.2021.117287.
- [15] M. C. Comstock, J. E. Braun, and E. A. Groll, "The sensitivity of chiller performance to common faults," in *ASHRAE Transactions*, 2002, p. 467. [Online]. Available: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036268812&partnerID=40&md5=8bdf982437a4d1a6b2ab383a53c1459>
- [16] Bellanco, E. Fuentes, M. Vallès, and J. Salom, "A review of the fault behavior of heat pumps and measurements, detection and diagnosis methods including virtual sensors," Jul. 01, 2021, *Elsevier Ltd.* doi: 10.1016/j.jobe.2021.102254.
- [17] H. Li and J. E. Braun, "Decoupling features for diagnosis of reversing and check valve faults in heat pumps," *International Journal of Refrigeration*, vol. 32, no. 2, pp. 316–326, Mar. 2009, doi: 10.1016/J.IJREFRIG.2008.05.005.

- [18] B. C. Pak, B. J. Baek, and E. A. Groll, "Impacts of fouling and cleaning on the performance of plate fin and spine fin heat exchangers," *KSME International Journal*, vol. 17, no. 11, pp. 1801–1811, 2003, doi: 10.1007/BF02983611.
- [19] M. Kim, S. Yoon, W. Payne, and P. Domanski, "Cooling Mode Fault Detection And Diagnosis Method For A Residential Heat Pump," Jul. 2008, *Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD*. [Online]. Available: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861650
- [20] M. Mehrabi and D. Yuill, "Generalized effects of faults on normalized performance variables of air conditioners and heat pumps," *International Journal of Refrigeration*, vol. 85, pp. 409–430, 2018, doi: <https://doi.org/10.1016/j.ijrefrig.2017.10.017>.
- [21] J. M. Cho, J. Heo, W. V. Payne, and P. A. Domanski, "Normalized performance parameters for a residential heat pump in the cooling mode with single faults imposed," *Appl Therm Eng*, vol. 67, no. 1–2, pp. 1–15, Jun. 2014, doi: 10.1016/J.APPLTHERMAENG.2014.03.010.
- [22] H. Cheung and J. E. Braun, "Simulation of fault impacts for vapor compression systems by inverse modeling. Part I: Component modeling and validation," *HVAC&R Res*, vol. 19, no. 7, pp. 892–906, Oct. 2013, doi: 10.1080/10789669.2013.824800.
- [23] H. Cheung and J. E. Braun, "Simulation of fault impacts for vapor compression systems by inverse modeling. Part II: System modeling and validation," *HVAC&R Res*, vol. 19, no. 7, pp. 907–921, Oct. 2013, doi: 10.1080/10789669.2013.819769.
- [24] G. Li and Y. Hu, "An enhanced PCA-based chiller sensor fault detection method using ensemble empirical mode decomposition based denoising," *Energy Build*, vol. 183, pp. 311–324, Jan. 2019, doi: 10.1016/J.ENBUILD.2018.10.013.
- [25] A. Afram and F. Janabi-Sharifi, "Gray-box modeling and validation of residential HVAC system for control system design," *Appl Energy*, vol. 137, pp. 134–150, Jan. 2015, doi: 10.1016/J.APENERGY.2014.10.026.
- [26] H. Li, D. Yu, and J. E. Braun, "A review of virtual sensing technology and application in building systems," *HVAC&R Res*, vol. 17, no. 5, pp. 619–645, Oct. 2011, doi: 10.1080/10789669.2011.573051.
- [27] A. Afram and F. Janabi-Sharifi, "Review of modeling methods for HVAC systems," *Appl Therm Eng*, vol. 67, no. 1–2, pp. 507–519, Jun. 2014, doi: 10.1016/J.APPLTHERMAENG.2014.03.055.
- [28] F. A. A. Souza, R. Araújo, and J. Mendes, "Review of soft sensor methods for regression applications," *Chemometrics and Intelligent Laboratory Systems*, vol. 152, pp. 69–79, Mar. 2016, doi: 10.1016/J.CHEMOLAB.2015.12.011.
- [29] Y. Li, S. Profile, and Z. O'Neill, "An EnergyPlus/OpenStudio based Fault Simulator for Buildings," 2016. [Online]. Available: <https://www.researchgate.net/publication/313876480>
- [30] H. Han, B. Gu, Y. Hong, and J. Kang, "Automated FDD of multiple-simultaneous faults (MSF) and the application to building chillers," *Energy Build*, vol. 43, no. 9, pp. 2524–2532, Sep. 2011, doi: 10.1016/J.ENBUILD.2011.06.011.
- [31] S. Boahen, K. H. Lee, and J. M. Choi, "Refrigerant charge fault detection and diagnosis algorithm for water-to-water heat pump unit," *Energies (Basel)*, vol. 12, no. 3, Feb. 2019, doi: 10.3390/en12030545.
- [32] S. Boahen, K. Mensah, Y. Nam, and J. Min Choi, "Fault detection methodology for secondary fluid flow rate in a heat pump unit," *Energies (Basel)*, vol. 13, no. 11, Jun. 2020, doi: 10.3390/en13112974.
- [33] A. Rafati and H. R. Shaker, "Predictive maintenance of district heating networks: A comprehensive review of methods and challenges," Aug. 01, 2024, *Elsevier Ltd*. doi: 10.1016/j.tsep.2024.102722.

WP 3

**SVILUPPO DI TOOL PER LA DIAGNOSI DI
SISTEMI MULTI-ENERGIA &
RETI DI TELERISCALDAMENTO**

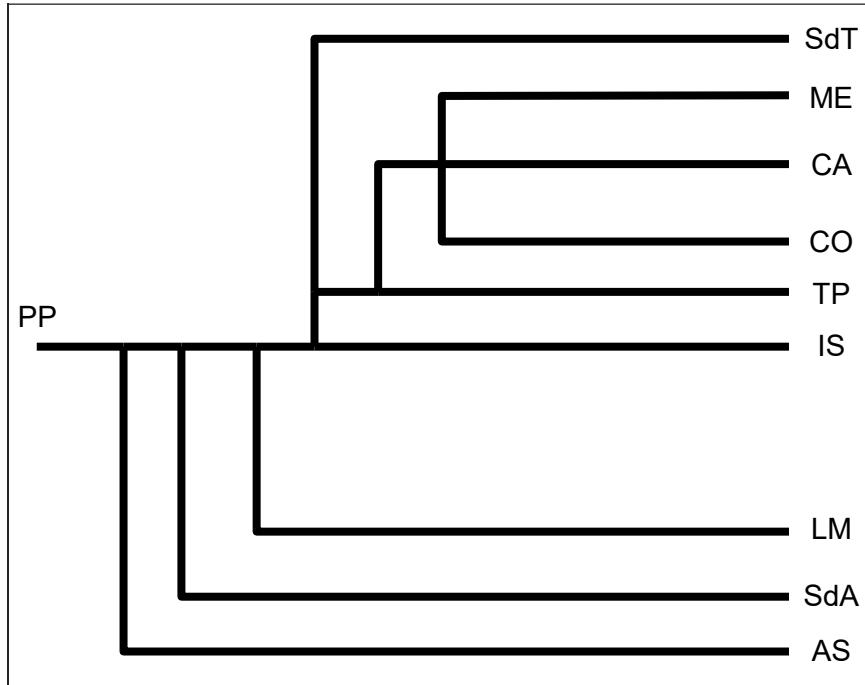
Methodology

Data-driven approach

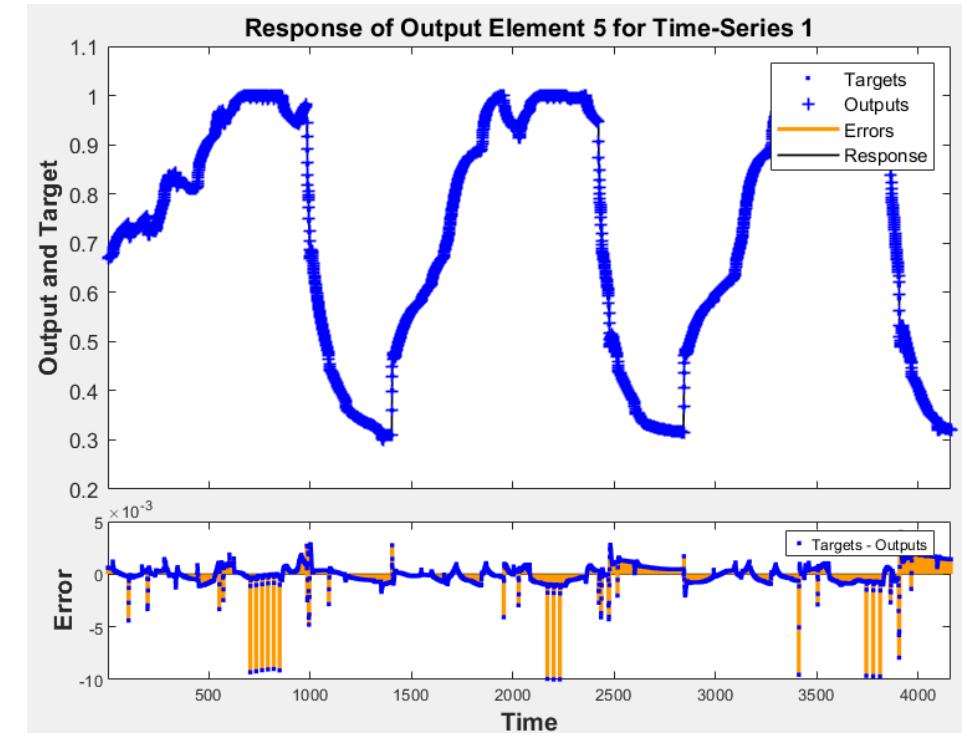
Identification of the faulty sub-system

- Transient and steady-state operation

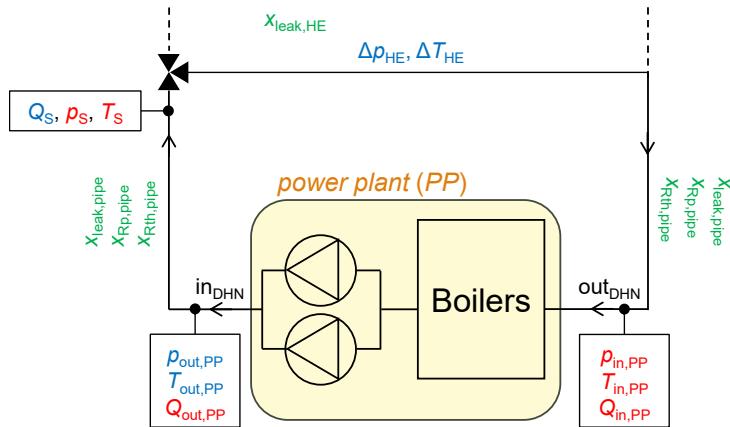
Physics-based approach


Identification of the fault type and magnitude

- Steady-state operation



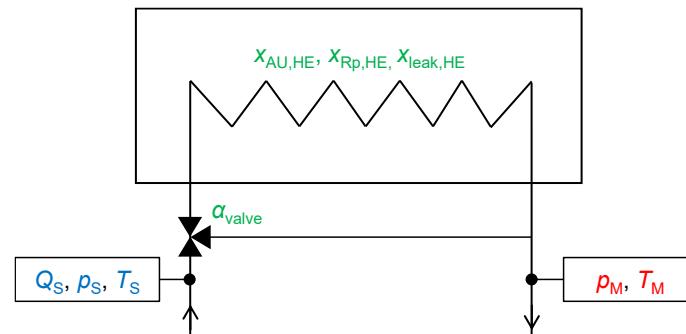
SVILUPPO DI TOOL PER LA DIAGNOSI DI RETI DI TELERISCALDAMENTO


District heating network of the Campus of University of Parma

- 9 end-users
- 32 pipes (supply + return pipelines)
- 2 pumps
- 17 datasets with faults and without faults

Pipes

INPUTS


Independent variables
 $Q_S, p_{out,PP}, T_{out,PP}$
 $T_{soil}, \Delta T_{HE}, \Delta p_{HE}$

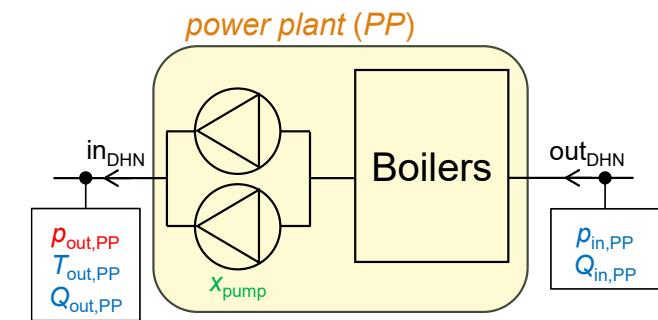
Dependent variables
 $\mu_{pipe}, D_{int,pipe}, D_{int,ins}, D_{int,case},$
 $L_{pipe}, \lambda_{pipe}, \lambda_{ins}, \lambda_{case}$

OUTPUTS

$x_{Rth,pipe}, x_{Rp,pipe}, x_{leak,pipe}, x_{leak,HE}$

Valves and heat exchangers

INPUTS


Independent variables
 Q_S, p_S, T_S
 $T_{soil}, T_{EU}, \alpha_{signal}$

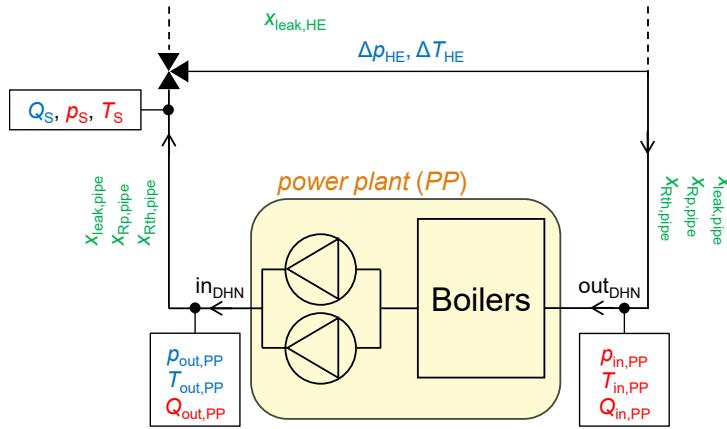
Dependent variables
 $k_{valve},$
 $\mu_{HE}, D_{HE}, L_{HE}, AU_{HE},$
 $\mu_{BY}, D_{BY}, L_{BY}, \lambda_{BY}$

OUTPUTS

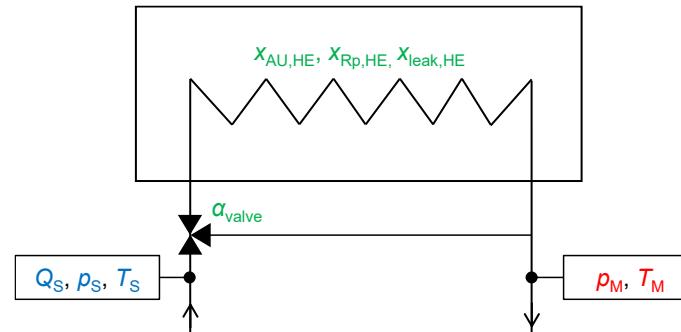
$\alpha_{valve}, x_{AU,HE}, x_{Rp,HE}, x_{leak,HE}$

Pumps

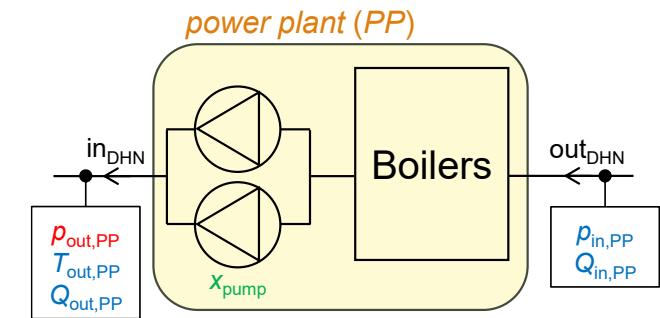
INPUTS


Independent variables
 $p_{in,PP}, Q_{in,PP}, T_{out,PP}, Q_{out,PP}$
 $k_{Boilers}, H_{pump} = f(Q_{out,PP})$

Dependent variables
 $p_{out,PP}$


OUTPUTS

x_{pump}


Pipes

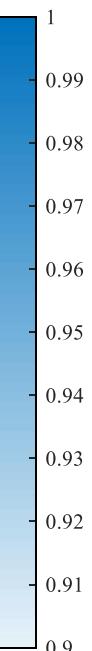
Valves and heat exchangers

Pumps

$$OF = \left(\frac{T_{in,PP} - T_{in,PP}^{calc}}{T_{in,PP}^{calc}} \right)^2 + \left(\frac{p_{in,PP} - p_{in,PP}^{calc}}{p_{in,PP}^{calc}} \right)^2 + \left(\frac{Q_{in,PP} - Q_{in,PP}^{calc}}{Q_{in,PP}^{calc}} \right)^2 + \left(\frac{Q_{out,PP} - Q_{out,PP}^{calc}}{p_{out,PP}^{calc}} \right)^2 + \sum_{i=1}^{N_{EU}} \left(\frac{T_{M,i} - T_{M,i}^{calc}}{T_{M,i}^{calc}} \right)^2 + \left(\frac{p_{M,i} - p_{M,i}^{calc}}{p_{M,i}^{calc}} \right)^2$$

$$OF = \sum_{i=1}^{N_{EU}} \left(\frac{T_{S,i} - T_{S,i}^{calc}}{T_{S,i}^{calc}} \right)^2 + \left(\frac{p_{S,i} - p_{S,i}^{calc}}{p_{S,i}^{calc}} \right)^2$$

$$OF = \left(\frac{p_{out,PP} - p_{out,PP}^{calc}}{p_{out,PP}^{calc}} \right)^2$$

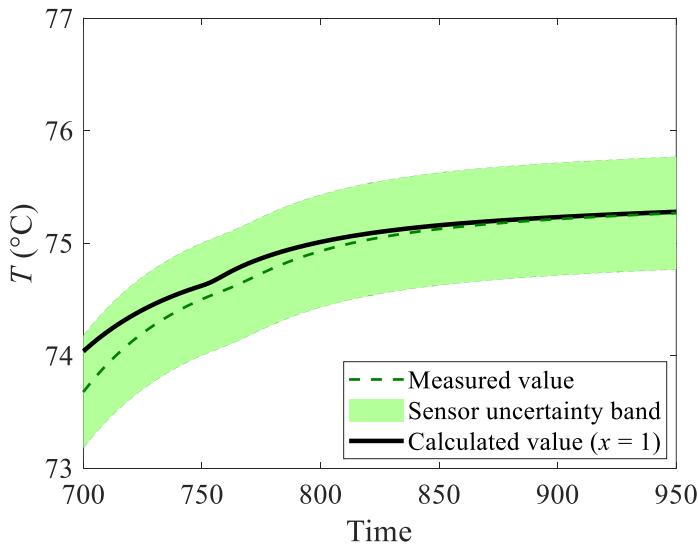


Minimize the OFs by using an optimization algorithm based on a gradient-based method

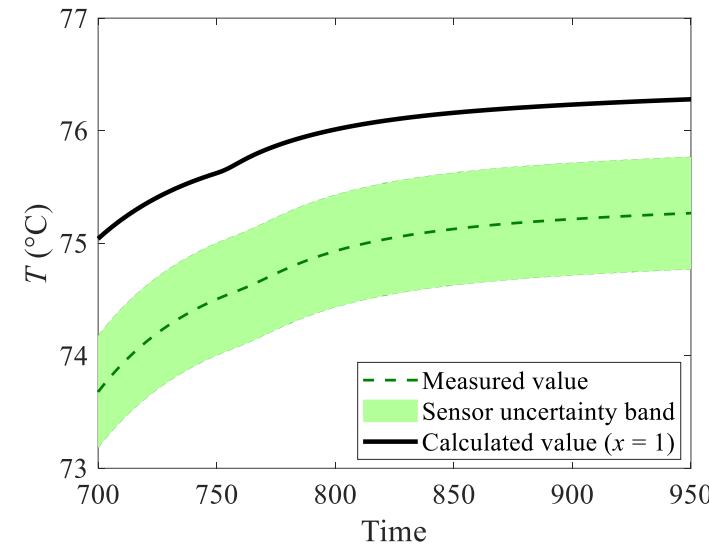
Dataset in which pipes are healthy

(all health indices x must be found equal to 1)

	$x_{Q,s}$	$x_{Rth,s}$	$x_{Rp,s}$	$x_{Q,r}$	$x_{Rth,r}$	$x_{Rp,r}$
CT-S04	1.00	0.92	1.00	1.00	0.95	1.00
S04-AS	1.00	1.00	1.00	1.00	1.00	1.00
S04-S07	1.00	0.93	1.00	1.00	0.95	1.00
S07-SdA	1.00	0.97	1.00	1.00	0.99	1.00
S07-S15	1.00	0.87	1.00	1.00	0.89	1.00
S15-LM	1.00	0.97	0.99	1.00	0.99	1.00
S15-S16	1.00	0.99	1.00	1.00	0.99	1.00
S16-IS	1.00	0.92	1.00	1.00	0.93	1.00
S16-S26	1.00	0.88	1.00	1.00	0.83	1.00
S26-SdT	1.00	0.98	1.00	1.00	0.98	1.00
S26-S27	1.00	1.00	1.00	1.00	1.00	1.00
S27-TE	1.00	0.98	1.00	1.00	0.97	1.00
S27-S34	1.00	0.99	1.00	1.00	0.99	1.00
S34-ME	1.00	0.98	0.99	1.00	0.99	1.00
S34-CA	1.00	0.98	1.00	1.00	0.97	1.00
S34-CO	1.00	0.98	1.00	1.00	0.99	1.00



If all health indices x are set equal to 1, the difference between (i) the measured temperatures and (ii) the calculated temperatures is lower than 0.1 °C.


The optimization approach significantly reduces the health indices that are associated to thermal dissipations.

Identification of sensor uncertainty bands:

- temperature: $\pm 0.5 \text{ }^{\circ}\text{C}$
- pressure: $\pm 0.25 \text{ \% full-scale}$
- mass flow rate: $\pm 0.3 \text{ \% reading value}$

The **calculated value** is *inside* the sensor uncertainty band: use the **calculated value** in objective function

The **calculated value** is *outside* the sensor uncertainty band: use the **measured value** in objective function

Example of diagnosis

Dataset «VB_50_IS»: due to a fault, the valve located in IS is always open at 50 %

Pipes

	$x_{Q,s}$	$x_{Rth,s}$	$x_{Rp,s}$	$x_{Q,r}$	$x_{Rth,r}$	$x_{Rp,r}$
CT-S04	1.00	1.00	1.00	1.00	1.00	1.00
S04-AS	1.00	1.00	1.00	1.00	1.00	1.00
S04-S07	1.00	1.00	1.00	1.00	1.00	1.00
S07-SdA	1.00	1.00	1.00	1.00	1.00	1.00
S07-S15	1.00	1.00	1.00	1.00	1.00	1.00
S15-LM	1.00	1.00	1.00	1.00	1.00	1.00
S15-S16	1.00	1.00	1.00	1.00	1.00	1.00
S16-IS	1.00	1.00	1.00	1.00	1.00	1.00
S16-S26	1.00	1.00	1.00	1.00	1.00	1.00
S26-SdT	1.00	1.00	1.00	1.00	1.00	1.00
S26-S27	1.00	1.00	1.00	1.00	1.00	1.00
S27-TE	1.00	1.00	1.00	1.00	1.00	1.00
S27-S34	1.00	1.00	1.00	1.00	1.00	1.00
S34-ME	1.00	1.00	1.00	1.00	1.00	1.00
S34-CA	1.00	1.00	1.00	1.00	1.00	1.00
S34-CO	1.00	1.00	1.00	1.00	1.00	1.00

Leakages in HEs

	$x_{leak,HE}$
AS	1.00
SdA	1.00
LM	1.00
IS	1.00
SdT	1.00
TE	1.00
ME	1.00
CA	1.00
CO	1.00

Pumps

	x_{pump}
CT	1.00

- Physics-based approach: *close valves*
- Signal: *close valves*
- Reality: *close valves*

Valves & HEs

	α_{valve}	$x_{AU,HE}$	$x_{Rp,AU}$	$x_{leak,HE}$
AS	1.00	1.00	1.00	1.00
SdA	0.00	1.00	1.00	1.00
LM	1.00	1.00	1.00	1.00
IS	0.49	1.00	1.00	1.00
SdT	1.00	1.00	1.00	1.00
TE	1.00	1.00	1.00	1.00
ME	1.00	1.00	1.00	1.00
CA	0.00	1.00	1.00	1.00
CO	1.00	1.00	1.00	1.00

Example of diagnosis

Dataset «VB_50_IS»: due to a fault, the valve located in IS is always open at 50 %

Pipes

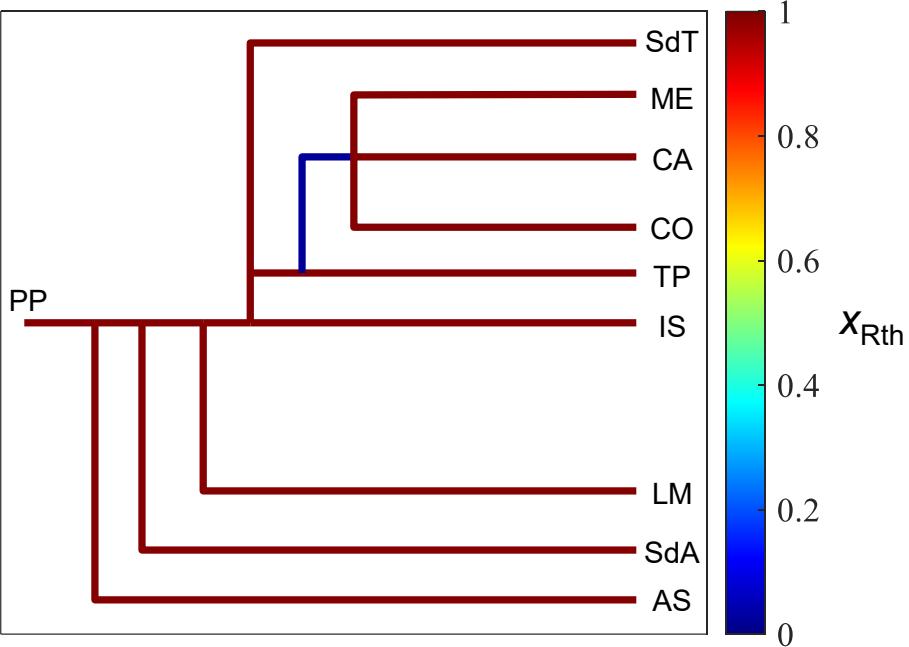
	$x_{Q,s}$	$x_{Rth,s}$	$x_{Rp,s}$	$x_{Q,r}$	$x_{Rth,r}$	$x_{Rp,r}$
CT-S04	1.00	1.00	1.00	1.00	1.00	1.00
S04-AS	1.00	1.00	1.00	1.00	1.00	1.00
S04-S07	1.00	1.00	1.00	1.00	1.00	1.00
S07-SdA	1.00	1.00	1.00	1.00	1.00	1.00
S07-S15	1.00	1.00	1.00	1.00	1.00	1.00
S15-LM	1.00	1.00	1.00	1.00	1.00	1.00
S15-S16	1.00	1.00	1.00	1.00	1.00	1.00
S16-IS	1.00	1.00	1.00	1.00	1.00	1.00
S16-S26	1.00	1.00	1.00	1.00	1.00	1.00
S26-SdT	1.00	1.00	1.00	1.00	1.00	1.00
S26-S27	1.00	1.00	1.00	1.00	1.00	1.00
S27-TE	1.00	1.00	1.00	1.00	1.00	1.00
S27-S34	1.00	1.00	1.00	1.00	1.00	1.00
S34-ME	1.00	1.00	1.00	1.00	1.00	1.00
S34-CA	1.00	1.00	1.00	1.00	1.00	1.00
S34-CO	1.00	1.00	1.00	1.00	1.00	1.00

Leakages in HEs

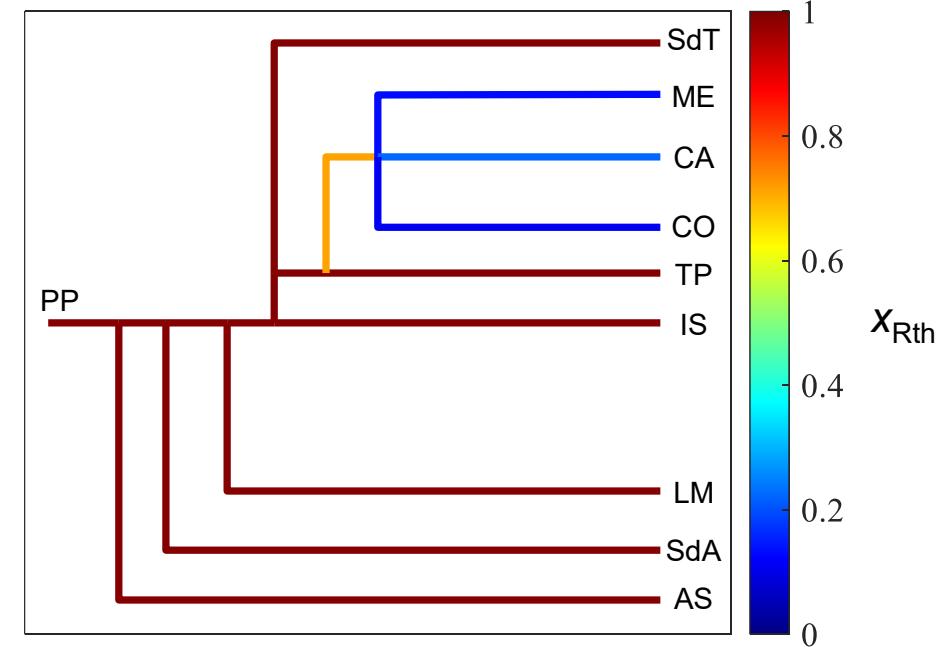
	$x_{leak,HE}$
AS	1.00
SdA	1.00
LM	1.00
IS	1.00
SdT	1.00
TE	1.00
ME	1.00
CA	1.00
CO	1.00

Pumps

	x_{pump}
CT	1.00


- Physics-based approach: valve open at 49 %
- Signal: open valve
- Reality: valve open at 50 %

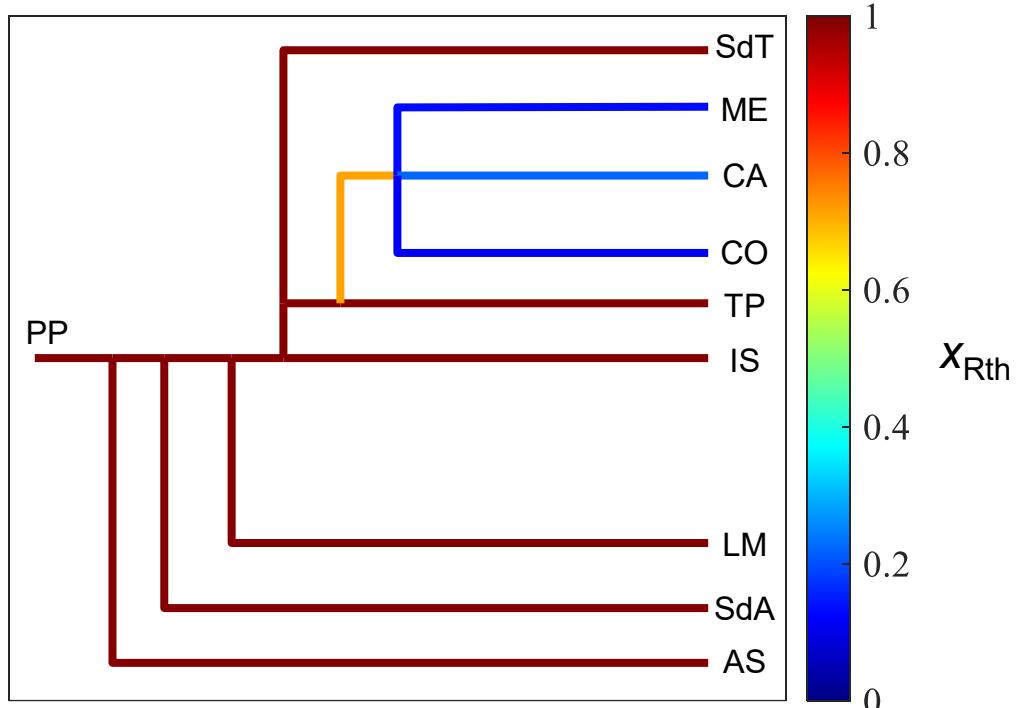
Valves & HEs


	α_{valve}	$x_{AU,HE}$	$x_{Rp,AU}$	$x_{leak,HE}$
AS	1.00	1.00	1.00	1.00
SdA	0.00	1.00	1.00	1.00
LM	1.00	1.00	1.00	1.00
IS	0.49	1.00	1.00	1.00
SdT	1.00	1.00	1.00	1.00
TE	1.00	1.00	1.00	1.00
ME	1.00	1.00	1.00	1.00
CA	0.00	1.00	1.00	1.00
CO	1.00	1.00	1.00	1.00

Fault located into intermediate pipes

Expected diagnosis

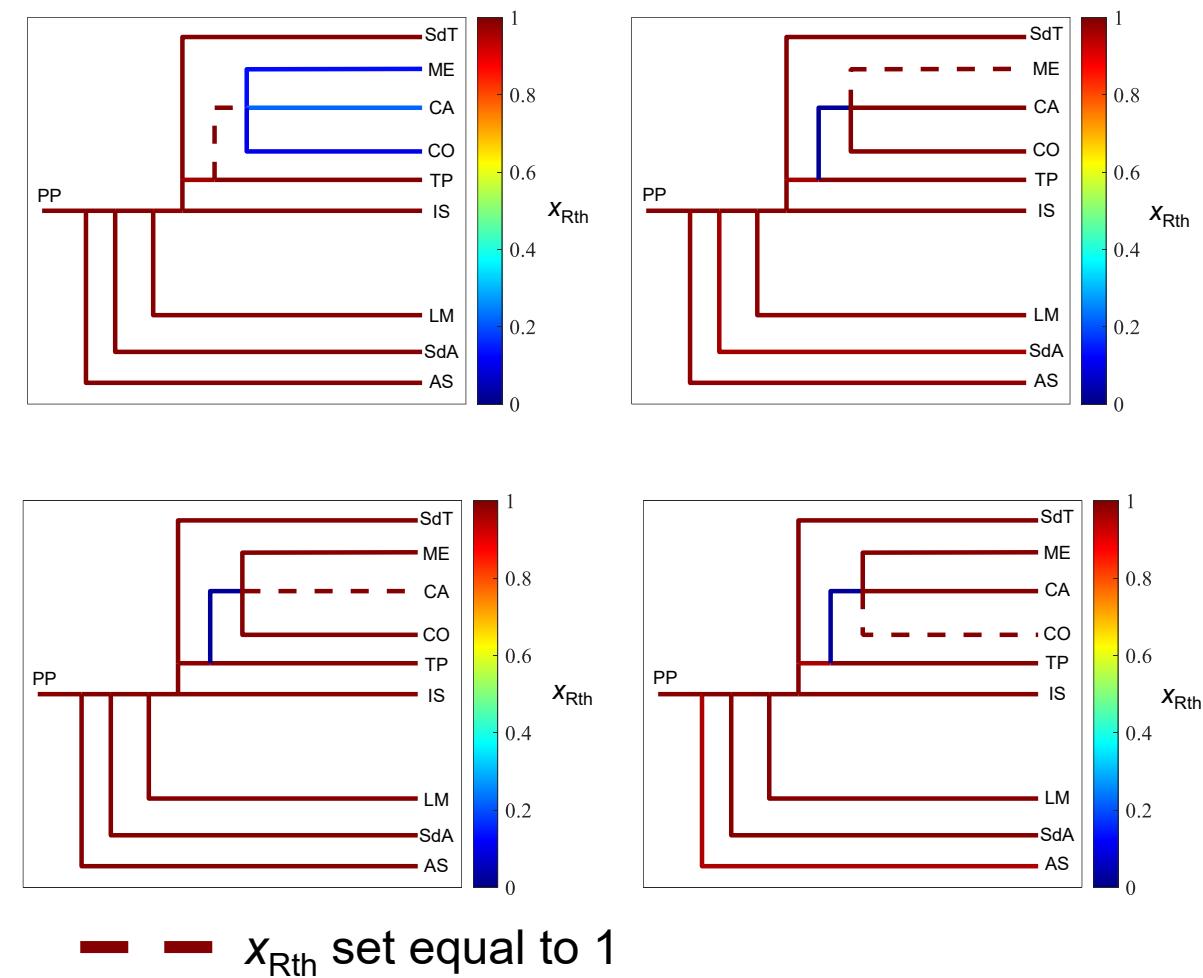
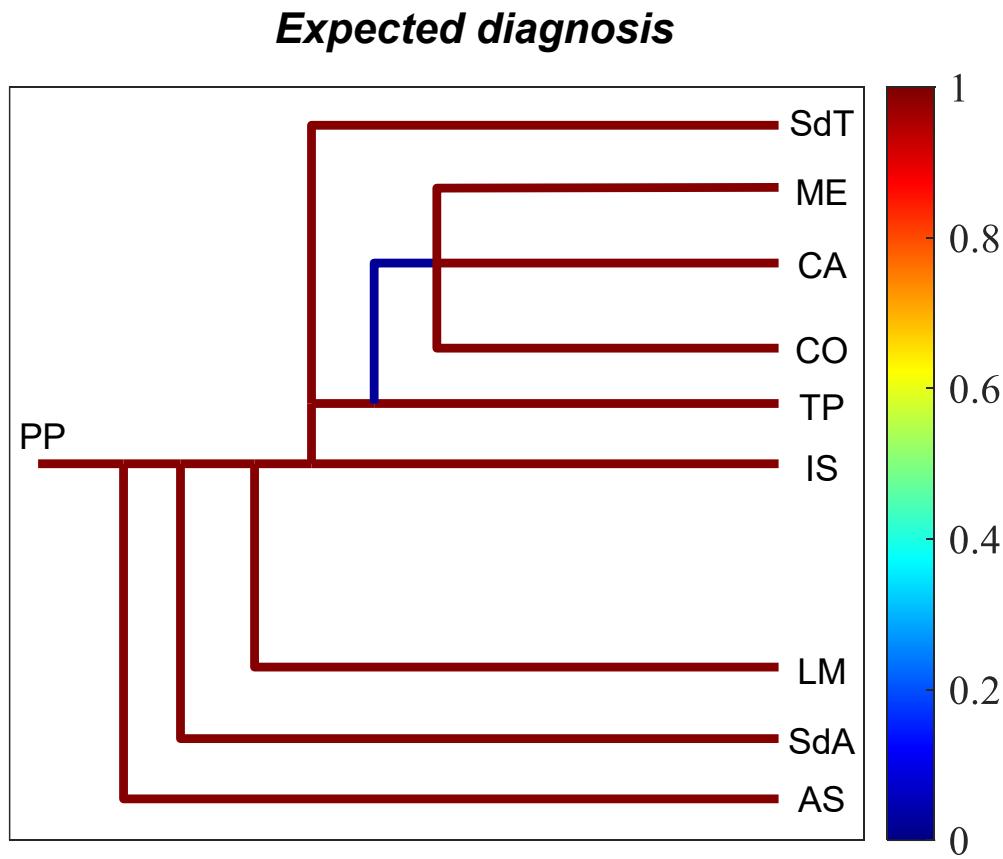
Diagnosis



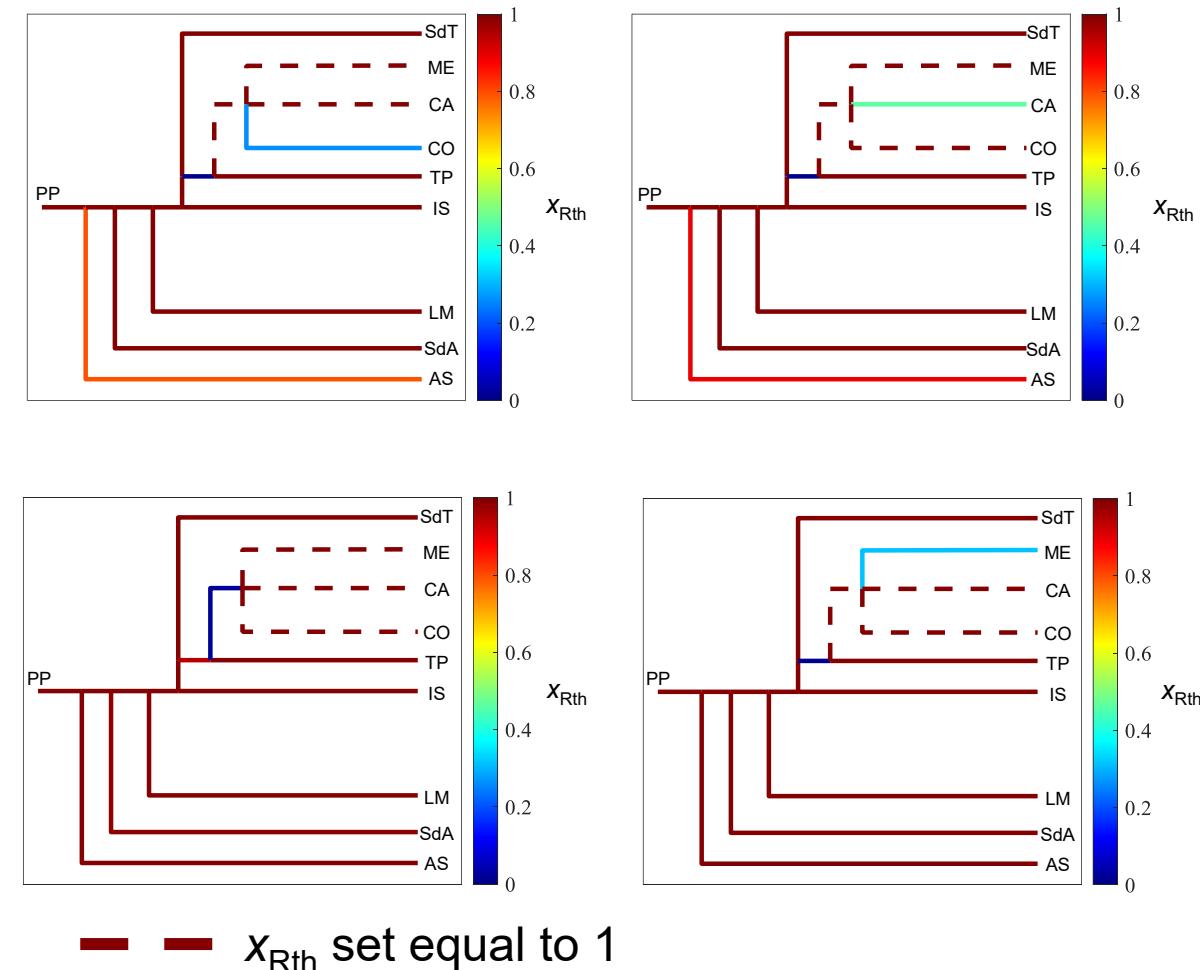
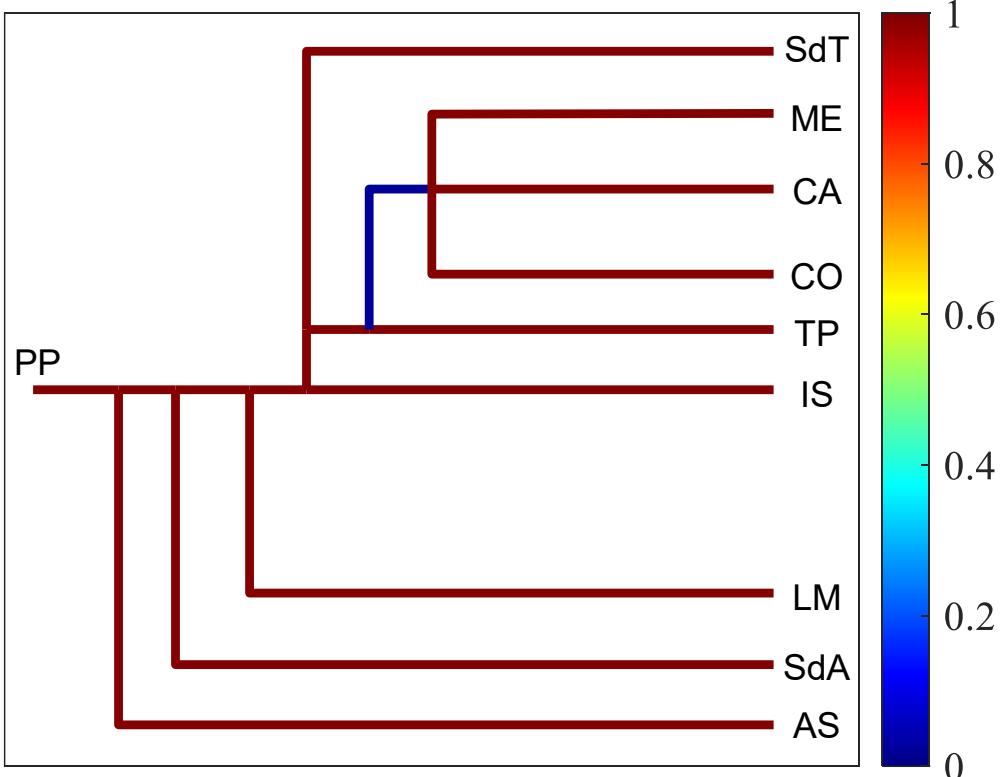
unknown variables > # equations

The fault magnitude is spread among consecutive pipes

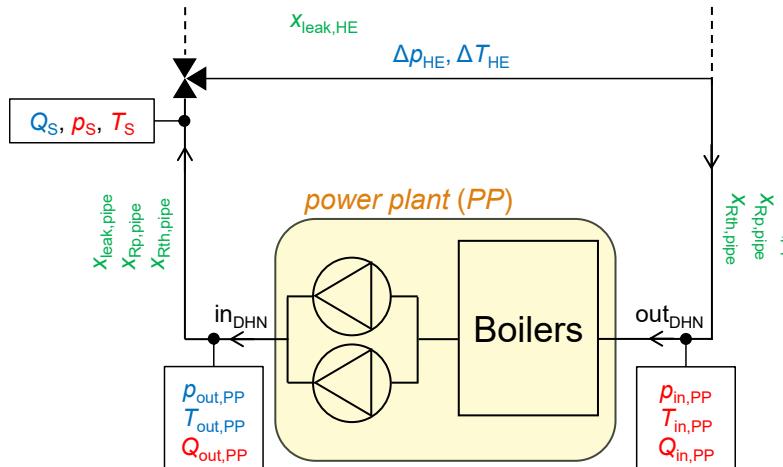
Diagnosis

Four health indices are found lower than 1



- a) In turn, one out of four health indices is set equal to 1
- b) In turn, three out of four health indices are set equal to 1

a) In turn, one out of four health indices is set equal to 1


b) In turn, three out of four health indices are set equal to 1

Expected diagnosis

Objective function that accounts for the contribution of both (i) physical quantities (i.e., Q , p , T) and (ii) health indices x

For example

$$OF = \left(\frac{T_{in,PP} - T_{in,PP}^{calc}}{T_{in,PP}^{calc}} \right)^2 + \left(\frac{p_{in,PP} - p_{in,PP}^{calc}}{p_{in,PP}^{calc}} \right)^2 + \left(\frac{Q_{in,PP} - Q_{in,PP}^{calc}}{Q_{in,PP}^{calc}} \right)^2 + \left(\frac{Q_{out,PP} - Q_{out,PP}^{calc}}{p_{out,PP}^{calc}} \right)^2 + \sum_{i=1}^{N_{EU}} \left(\frac{T_{S,i} - T_{M,i}^{calc}}{T_{S,i}^{calc}} \right)^2 + \left(\frac{p_{S,i} - p_{S,i}^{calc}}{p_{S,i}^{calc}} \right)^2$$

$$OF_{tot} = OF + \text{penalty factor} \times \sum_{i=1}^N (1-x_i)^2$$