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State of the art: REC diagnosis

14/07/2025

Project Duration Focus 

Energynius 2019-

2021

Design and management of integrated 

energy systems

WEDISTRICT 2019-

2023

Integration of multiple sources of 

renewable energy and excess heat at 

three demonstration sites

ESPON 

TANDEM 

2024-

2028

Creation of the largest EU-backed 

database of energy communities

ASCEND 2023-

2027

Implementation of PCED (Positive clean 

energy district) in multiple cities

D4Heat 2024-

2027

Data-driven diagnosis of district heating 

substations

List of available projects

- Research source: Cordis

Available papers

- Research source: Science Direct

- Keywords: 

• "fault detection", "diagnostic”, 

“FDD", and "diagnosis”



Literature review: current status

Component Types of fault
Diagnostic 

methodology
Literature gap

Energy production & 

storage

Heat pump ✓ ✓ ✓

Boiler ✓ ✓

CHP ✓ ✓

PV

Battery

Absorption chiller

Compression chiller

Energy distribution

District heating network ✓ ✓ ✓

District cooling network ✓ ✓ ✓

Pump ✓ ✓

Power grid

Thermal 

energy

Electrical 

energy

Cooling 

energy

Legend

In depth analyzed by IN4
✓



Example of literature review: heat pumps

14/07/2025

Fault Impact Reference

Refrigerant 

Undercharge

COP drop, increased 

discharge temp, 

compressor risk

[1-8]

Refrigerant 

Overcharge

Increased compressor 

work, possible liquid 

slugging

[2-5, 9-15]

Non-

condensable 

Gas

Increases pressure, 

Thermal expansion valve 

malfunction

[10, 15-17]

Liquid Line 

Restriction

Flow drop, temperature 

anomalies

[7, 9, 11, 
13, 14, 16, 
18-20]

Heat Exchanger 

Fouling

Reduced heat transfer, 

pressure drops

[4, 10, 12, 
13, 20-23]

Compressor 

Valve Leakage

Flow rate drop, 

increased suction 

pressure

[4, 6, 14, 
20]

4-way Valve 

Leakage

Refrigerant bypass, COP 

drop

[16, 17, 21, 
24]

Sensor Faults
False diagnostics, 

compromised controls
[17, 25]

Types of faults Diagnostic methodologies Literature gap

Model 

category
Examples 

Reference

Physics-

based

• Thermodynamic 

analysis

• UA factor and 

LMTD 

modification

• Energy balance 

equation

• Refrigerant state 

correlations

[26-30]

Data-

driven

• ANN

• SVM

• PCA

• Bayesian network

• tree-based model

[26, 27, 31]

Hybrid 

A combination of 

data-driven and 

physics-based 

models

[32, 33]

- Limited availability of FDD 

methods for multiple simultaneous 

faults

- Few methods with realistic 

reproduction of faults

- Limited literature regarding 

reversible heat pumps 
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SVILUPPO DI TOOL PER LA DIAGNOSI DI 

SISTEMI MULTI-ENERGIA & 

RETI DI TELERISCALDAMENTO



Goal

Methodology

P.R. Spina 9

▪ Steady-state operation

▪ Transient and steady-state operation

Data-driven approach

Identification of the faulty sub-system

Physics-based approach

Identification of the fault type and magnitude 

14/01/2025

Measurements

Prediction model + threshold-based criterion

DATA-DRIVEN DIAGNOSTIC 

METHODOLOGY

PHYSICS-BASED DIAGNOSTIC 

APPROACH

Subsystem model + optimization algorithm

Health 

indices

Faulty component

Fault type

Fault magnitude

Alert & subsystem identification

PVTES

Solar energy

Grid

Electrical energy

demand

Cooling energy

demand

Thermal energy

demand

STC

CHP

ACASHP CC

GB

Natural gas

Qmeas, pmeas, Tmeas, 

meas, nmeas

Prediction model + threshold-based criterion

DATA-DRIVEN DIAGNOSTIC 

METHODOLOGY

PHYSICS-BASED DIAGNOSTIC 

APPROACH

DHN model + optimization algorithm

Health 

indices

Faulty component

Fault type

Fault magnitude

Alert & subsystem identification

DHN characteristics 

and site



SVILUPPO DI TOOL PER LA DIAGNOSI DI

RETI DI TELERISCALDAMENTO



Case study
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District heating network of the Campus of University of Parma

PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

▪ 9 end-users

▪ 32 pipes (supply + return pipelines)

▪ 2 pumps

▪ 17 datasets with faults and without faults



Data-driven approach (in progress)
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NARX

TEU 
(9 in total)

PP schedule

pin,PP

pout,PP

Tin,PP

Tout,PP

Qout,PP



Physics-based approach
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Pipes Valves and heat exchangers Pumps

INPUTS

Independent 

variables

QS, pS, TS

Tsoil, TEU, αsignal

kvalve,

µHE, DHE, LHE, AUHE, 

µBY, DBY, LBY, λBY

Dependent 

variables
pM, TM

INPUTS

Independent 

variables

pin,PP, Qin,PP, Tout,PP, Qout,PP 

kBoilers, Hpump = f(Qout,PP)

Dependent 

variables
pout,PP

OUTPUTS

αvalve, xAU,HE, xRp,HE, xleak,HE

OUTPUTS

xpump

QS, pS, TS pM, TM

αvalve

xAU,HE, xRp,HE, xleak,HE

Boilers
outDHNinDHN

pout,PP

Tout,PP

Qout,PP

xpump

pin,PP

Qin,PP

power plant (PP)

Boilers
outDHNinDHN

pout,PP

Tout,PP

Qout,PP

pin,PP

Tin,PP

Qin,PP

power plant (PP)

QS, pS, TS

xleak,HE

ΔpHE, ΔTHE

x
le

a
k
,p

ip
e

x
R

p
,p

ip
e

x
R

th
,p

ip
e

x
le

a
k
,p

ip
e

x
R

p
,p

ip
e

x
R

th
,p

ip
e

INPUTS

Independent 

variables

QS, pout,PP, Tout,PP

Tsoil, ΔTHE, ΔpHE

µpipe, Dint,pipe, Dint,ins, Dint,case, 

Lpipe, λpipe, λins, λcase

Dependent 

variables

pS, TS, Qout,PP, pin,PP, Tin,PP, 

Qin,PP    

OUTPUTS

xRth,pipe, xRp,pipe, xleak,pipe, xleak,HE



Physics-based approach
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Pumps

Boilers
outDHNinDHN

pout,PP

Tout,PP

Qout,PP

pin,PP

Tin,PP

Qin,PP

power plant (PP)

QS, pS, TS

xleak,HE

ΔpHE, ΔTHE

x
le

a
k
,p

ip
e

x
R

p
,p

ip
e

x
R

th
,p

ip
e

x
le

a
k
,p

ip
e

x
R

p
,p

ip
e

x
R

th
,p

ip
e

OF = ෍

i=1

NEU TM,i − TM,i
calc 

TM,i
calc

2

+
pM,i − pM,i

calc 

pM,i
calc

2

OF =
pout,PP − pout,PP

calc  

pout,PP
calc

2

OF =
Tin,PP − Tin,PP

calc  

Tin,PP
calc

2

+
pin,PP − pin,PP

calc  

pin,PP
calc

2

+

+
Qin,PP − Q

in,PP
calc  

Q
in,PP
calc

2

+
Qout,PP − Q

out,PP
calc  

p
out,PP
calc

2

+

+ ෍

i=1

NEU TS,i − TM,i
calc 

TS,i
calc

2

+
pS,i − pS,i

calc 

pS,i
calc

2

Valves and heat exchangers

QS, pS, TS pM, TM

αvalve

xAU,HE, xRp,HE, xleak,HE

Minimize the OFs by using an optimization algorithm 

based on a gradient-based method

Pipes

Boilers
outDHNinDHN

pout,PP

Tout,PP

Qout,PP

xpump

pin,PP

Qin,PP

power plant (PP)



Physics-based approach: challenge #1
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Dataset in which pipes are healthy
(all health indices x must be found equal to 1)

If all health indices x are set equal to 1, the 

difference between (i) the measured 

temperatures and (ii) the calculated 

temperatures is lower than 0.1 °C. 

The optimization approach significantly 

reduces the health indices that are associated 

to thermal dissipations. 



14/07/2025

Identification of sensor uncertainty bands:

▪ temperature: ±0.5 °C

▪ pressure: ±0.25 % full-scale

▪ mass flow rate: ± 0.3 % reading value

The calculated value is outside the sensor 

uncertainty band: use the measured value in 

objective function

The calculated value is inside the sensor 

uncertainty band: use the calculated value in 

objective function

Physics-based approach: challenge #1



Example of diagnosis

14/07/2025

Dataset «VB_50_IS»: due to a fault, the valve located in IS is always open at 50 % 

Pipes Leakages in HEs

▪ Physics-based approach: close valves

▪ Signal: close valves

▪ Reality: close valves
Pumps

Valves & HEs



Example of diagnosis

14/07/2025

Dataset «VB_50_IS»: due to a fault, the valve located in IS is always open at 50 % 

Pipes Leakages in HEs

Pumps

▪ Physics-based approach: valve 

open at 49 %

▪ Signal: open valve

▪ Reality: valve open at 50 %

Valves & HEs



Physics-based approach: challenge #2
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Fault located into intermediate pipes

# unknown variables > # equations

The fault magnitude is spread among consecutive 

pipes

Expected diagnosis Diagnosis

xRth
PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth

PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT



Example of diagnosis
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Four health indices are found lower than 1

Diagnosis

a) In turn, one out of four health indices is set equal to 1

b) In turn, three out of four health indices are set equal to 1 

xRth
PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT



Example of diagnosis
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a) In turn, one out of four health indices is set equal to 1

xRth

PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth

PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth

PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth

xRth

PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth set equal to 1

Expected diagnosis



Example of diagnosis
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b) In turn, three out of four health indices are set equal to 1

xRth
PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth
PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth
PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth
PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

xRth

PP

AS

SdA

CA

CO

LM

IS

TP

ME

SdT

Expected diagnosis

xRth set equal to 1



Physics-based approach (in progress)

14/07/2025

Objective function that accounts for the contribution of both (i) physical quantities (i.e., Q, p, T) and (ii) health 

indices x

For example

Boilers
outDHNinDHN

pout,PP
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power plant (PP)
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2
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