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State of the art: REC diagnosis

Available papers List of available projects

- Research source: Science Direct
Keywords: - Research source: Cordis

« "fault detection", "diagnostic”,
“FDD", and "diagnosis”

Literature availability: diagnostic

10000 ot Project Duration Focus
5 Energynius 2019- Design and management of integrated
’8; i 2021 energy systems
2 1000 ¢
® i WEDISTRICT 2019- Integration of multiple sources of
[
S I 2023 renewable energy and excess heat at
fg 100 ¢ three demonstration sites
é ESPON 2024- Creation of the largest EU-backed
2 10l TANDEM 2028 database of energy communities
ASCEND 2023- Implementation of PCED (Positive clean
) | 2027 energy district) in multiple cities
D4Heat 2024- Data-driven diagnosis of district heating
2027 substations
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Literature review: current status

Diagnostic ,
Component Types of fault methodology Literature gap
Heat pump v v v
Boiler v v Thermal
energy
CHP v 7 Electrical
energy
Energy production & =Y Cooling
storage
energy
Battery
Absorption chiller
Compression chiller
Legend
District heating network v v v In depth analyzed by IN* v/
District cooling network v v v
Energy distribution
Pump v v
Power grid
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Types of faults

(Q Example of literature review: heat pumps

Diagnostic methodologies

Model
category

Examples

Reference

Physics-
based

* Thermodynamic
analysis

» UAfactor and
LMTD
modification

* Energy balance
equation

» Refrigerant state
correlations

[26-30]

Data-
driven

« ANN
« SVM
« PCA
+ Bayesian network
* tree-based model

[26, 27, 31]

Fault Impact Reference
= -
Undercharge getemb,
compressor risk
Refrigerant Increased 9ompre§sor
work, possible liquid [2-5, 9-15]
Overcharge .
slugging
Non- Increases pressure,
condensable Thermal expansion valve | [10, 15-17]
Gas malfunction
T [7,9,11,
Liquid Line Flow drop, temperature
L , 13, 14, 16,
Restriction anomalies
18-20]
Heat Exchanger | Reduced heat transfer, [4,10,12,
Fouling pressure drops 13, 20-23]
Flow rate drop,
Compressor . : [4,6,14,
increased suction
Valve Leakage 20]
pressure
4-way Valve Refrigerant bypass, COP | [16, 17, 21,
Leakage drop 24]
False di ti
Sensor Faults aise dlagnostics, [17, 25]

compromised controls

Hybrid

A combination of
data-driven and
physics-based
models

[32, 33]

Literature gap

- Limited availability of FDD
methods for multiple simultaneous

faults

- Few methods with realistic

reproduction of faults

- Limited literature regarding

reversible heat pumps
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Methodology
Data-driven approach

Identification of the faulty sub-system

B = e
: \ ‘ T
4 ar o
I
1 BB &
Qmeas| pmeas | Tmeas DHN characteristics
Measurements .
ofmeas | pmeas and site . .
I » Transient and steady-state operation
DATA-DRIVEN DIAGNOSTIC DATA-DRIVEN DIAGNOSTIC
METHODOLOGY METHODOLOGY
Prediction model + threshold-based criterion Prediction model + threshold-based criterion P hyS ICS -baS e d a p p roacC h
Alert & subsystem identification Alert & subsystem identification
PHYSICS-BASED DIAGNOSTIC PHYSICS-BASED DIAGNOSTIC
APPROACH — APPROACH N
Subsystem model + optimization algorithm DHN model + optimization algorithm
l Identification of the fault type and magnitude
Health Health
indices indices
Faulty component .
Foult e e = Steady-state operation
Fault magnitude Fault type
Fault magnitude
-, Universita .
i et Bty P.R. Spina 14/01/2025 9
errara

o
{& LEAP

Vb s e
'Jj POUTCDNICE DI MILAND



SVILUPPO DI TOOL PER LA DIAGNOSI Di
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District heating network of the Campus of University of Parma

PP

SdT
ME

CA

co
TP

LM

SdA
AS

9 end-users
32 pipes (supply + return pipelines)
2 pumps

17 datasets with faults and without faults
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o Response of Output Element 5 for Time-Series 1
Targets
T + Outputs
p 09 L Errors |
in PP o Response
Tey ’ |
(9 in total) S
- 0.7
pout,PP -
+« 0.6
=
T. 205
. =l
in,PP o
0.4
Toutpp >
out,
PP schedule 0.2
Qout,PP e
£
w
10 500 ‘IDIDD ‘ISIDD ZDIDD ZS‘DD 3DIDD .SSIDD . 4DIDD
Time
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é% Physics-based approach
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Pipes Valves and heat exchangers Pumps

Xieak,HE

Apyg, ATye

~

r
\

Qs, ps, T
XaU,HE» XRp,HE, Xieak,HE
2 o g & in out
sas 5f % DHN i DHN
© g £ - 235 BOI'GFS LT—
<% % s ° 3
(0]
n out Pout,pp Pinpp
Boilers S Qinpp
n,

7—out,PF’ K X /
um

Pout,pp
Tout,PP

T

Pin,pp

Tin,PP

Qout,PP Qm,PP

INPUTS INPUTS INPUTS

Qs, Ps: Ts Pinpp Qinper Toutprr Qoutpp

Qs, Poutpr: Toutpp Independent

T AT Ap Teor Teu QsignatHHEPEHMEIL - ====mmmsmmmmmmmm oo mmmm
Independent - T Independent R r L |- EEEEEEEEEE variables Keoiterss Hoump = f(Qoutpp)
variables l"pipe’ Dint,pipe’ Dint,ins’ Dint,case’ variables kvalve’ ‘

Lpipe’ Apipe’ Ains’ Acase Hres DHE’ LHE’ AUHE’ Dependent

‘ Mays Day: Lay, Agy variables Pout,pp
Dependent Ps: Ts, Qoutpes Pinper Tinpes Dependent
variables Qin,PP variables Pw» TM
OUTPUTS OUTPUTS OUTPUTS
Qvaives XAU,HE» XRp,HE, Xleak,HE Xpump

XRth,pipe= XRp,pipe’ Xleak,pipe’ XIeak,HE
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o ([ ‘B Physics-based approach
Pumps

PIACE
Pipes Valves and heat exchangers
i Xieak HE i
X4 Apye, ATye ! power plant (PP)
' XAU,HE> XRp,HE, Xleak,HE / \
% 2 g power plant (PP) gggx T, Boilers outp
S EE 53 <
B°"ej = o o
J Pucr Quee | N\ /
Tin
Qin,lp;;
2

2 2 N 2 2
OF = Ti"’PP_TiC”a}EP + [Pin.PP P ﬁf}l—f?p + OF = NI Tl\/l,i'Tf\:/la,liC . F’M,i‘p(l\:/(f‘,liC OF = Pout,PP‘Pgﬂlt?pp
Ti(;\a,lgP Pi?ﬁIF?P i=1 T(I\:/?Ilc p(l\:/ffl,lic pgﬁlt(,:PP
2
Qinpp = B | |, [ Qoutpr ~ ep
Qcalc pcalc +
in,PP out,PP L . - . .

Ney Te. - TSR 2 s, - pEI° ©/> Minimize the OES by using an optimization algorithm
* 21 gl ¥ gl based on a gradient-based method

1= | 1
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PEAGI-ER Physics-based approach: challenge #1

Picttafarma Comunito

Progettazions Enargetiche
Eestione Rinnowakili

Dataset in which pipes are healthy
(all health indices x must be found equal to 1)

CT-S04

S04-AS . .

504-507 If all health indices x are set equal to 1, the
o difference  between (i) the measured
S151M temperatures and (i) the calculated
o temperatures is lower than 0.1 °C.

S16-S26

2226655 The optimization approach significantly
$27-TE reduces the health indices that are associated
527534 to thermal dissipations.

S34-ME

S34-CA

S34-CO

X X X X
Q.s Rth,s Rp.s Q.r Rth,r Rp,r

W
o5 LEAP
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|dentification of sensor uncertainty bands:
= temperature: £0.5 °C

= pressure: £0.25 % full-scale

» mass flow rate: £ 0.3 % reading value

7

’ - - —Measured value
Sensor uncertainty band
Calculated value (x = 1)

73 ‘ :
700 750 800 850 900 950

Time

The calculated value is inside the sensor
uncertainty band: use the calculated value in
objective function

challenge #1

77
76 / .
o L o eae--m--s
8_/ 75 [ - -
~ P
74| ,¢°
3 - - -Measured value
Sensor uncertainty band
Calculated value (x = 1)
73 : : : :
700 750 800 850 900 950

Time
The calculated value is outside the sensor

uncertainty band: use the measured value in
objective function

.
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PIA(I-E Example of diagnosis

F'lr atarma Comunito
ettazlone Enargetiche
Rirnowvabili

Dataset «VB_50 [IS»: due to a fault, the valve located in IS is always open at 50 %
Pipes Leakages in HEs

CT-S04
S04-AS 0.99
S04-S07
S07-SdA 0.98
S07-S15 0.97
S15-LM
S15-S16 0.96
Valves & HEs
S16-S26
S26-SdT 0.94
$26-S27
$27-TE 093 AS
S27-S34 0.92
S34-ME
S34-CA 091
S34-CO B 09
XQ,S *Rihs XRN XQ; XRihr XRp,r X jeak HE LM
] 1S
» Physics-based approach: close valves
\ n i . SdT
Pumps Slgngl. close valves
| » Reality: close valves
0.99 TE
" /\ ME 1.00 103
0.97
() om
0.96
0.95 101
0.94
— 0
0.93
o alve X AUHE XRp.AU X |cak,HE
0.91
0.9

X
pump

m-
LEAP 14/07/2025
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PIA(I-E Example of diagnosis

F'lr atarma Comunito
ettazlone Enargetiche
Rirnowvabili

Dataset «VB_50 [IS»: due to a fault, the valve located in IS is always open at 50 %
Pipes Leakages in HEs

CT-S04
S04-AS 0.99
S04-S07
S07-SdA 0.98
S07-S15 0.97
S15-LM
S15-S16 0.96
oo Valves & HEs
S26-SdT 0.94
$26-S27
S27-TE 0.93 AS
S27-S34 0.92
S34-ME SdA
S34-CA 091
S34-CO 0.9
XQ,S *Rihs XRN XQ; XRihr XRp,r X jeak HE LM
SdT
Pumps
1
= Physics-based approach: valve TE
! open at 49 %
. ME
= Signal: open valve
036 » Reality: valve open at 50 % CA
0.95
0.94 CO
0.93
o alve X AUHE XRp.AU X |cak,HE
0.91
0.9

X
pump

m-
LEAP 14/07/2025
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Fault located into intermediate pipes

Expected diagnosis Diagnosis
1 1
SdT SdT
ME ME
CA 0.8 CA 0.8
Co co
PP PP
IS XRth 1S XRth
10.4 10.4
TN P LM B 0.2
SdA SdA
AS AS
0 0

# unknown variables > # equations

A The fault magnitude is spread among consecutive
pipes

&
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0 /-R Example of diagnosis

PIACE y
Diagnosis
SdT :
ME
CA 0.8 Four health indices are found lower than 1

CO
PP

IS XRih
{0.4 a) Inturn, one out of four health indices is set equal to 1
b) Inturn, three out of four health indices are set equal to 1

M 0.2

SdA

AS

0

W
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PEA(I-E‘B Example of diagnosis

Con
Enargetiche
Rinnowakili

a) In turn, one out of four health indices is set equal to 1

Piottatarma
Progettazians

. . SdT SdT
Expected diagnosis «m | - ME
1 - CA 0.8 CA
SdaT ! co co
| TP 0.6 op TP
ME = IS XRth IS
0.8 0.4
CA LM 0n LM
SdA SdA
CcO AS AS
i 0
TP 0.6
PP
IS ppes 1 SdT
10.4 I [ o
CcO b o e = = co
P 0.6 TP
PP PP
IS X IS
LM 0.2 y Rth
SdA
LM 02 LM
AS SdA ' SdA
0 AS . AS
- = ¥ S€t equal to 1
e,
o5 LEAP 14/07/2025
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PEA(I-E‘B Example of diagnosis

Con
Enargetiche
Rinnowakili

b) In turn, three out of four health indices are set equal to 1

Piottatarma
Progettazians

Eestione

1
Expected diagnosis | o= ifET _____ “:ET
0.8
1 e - cA
SdaT : |_—co oL co
1 ™ 0.6 1 ™
ME PP s Xew | |E s
0.8 0.4
CA | LM
SdA SdA
CO AS . AS
10.6
TP
PP
IS st ' SdT
Ilnasa | ] == ME ME
0.4 —I—————CA 08 —|:————CA
- - - co L co
op P || 100 o : P
LM 0.2 1S XRih IS
. 0.4
SdA
LM 02 LM
AS SdA SdA
0 AS . AS
- = ¥ S€t equal to 1
14/07/2025
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o /- ‘B Physics-based approach (in progress)

PIACE
Objective function that accounts for the contribution of both (i) physical quantities (i.e., Q, p, T) and (ii) health
indices x
FOI’ example | Xieak,HE :
i‘ Appe, ATye i
[Qope s |4
power plant (PP)

adid qu
ed!d‘dax
adgd‘xee|x

Xleak,pipe
XRp pipe
XRith,pipe

. t
Boﬂersw oo
?
Pinpp
7—in,PF'
Qinpp

2 2 2 2
— rcalc — pcalc — ocalc — ocalc - 7calc — pcalc
op (TP~ Tipp \ | (Pinpp ~Pipp | (Ginpp~ Fnpp | | (Coutpr ~ Joitpp +yMEu(Isi ™M\, (Psi”PSi
Tcalc p_calc calc pcalc i=1 Tcalc pca_lc
in,PP in,PP in,PP out,PP S,i S,i

N
OFiot = OF + penalty factor x Z (1—xi)2
i=1
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