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Introduction

Italian energy communities (EC) operation cost optimisation should account for the 
incentive on shared energy recognized by GSE to the EC (60-120 €/MWh). 

Thus, optimising EC’s operation cost requires coordination of the members 
equipped with flexible energy assets: the optimal schedule of the single member acting 
alone may not coincide with the optimum of the community. 

An application of distributed optimisation to energy communities in Italy 1/11



Introduction

i = 1,…,P → community 
members.

t = 1,…,T → timesteps 
of the optimization 
horizon.

Cost(i,t) = energy 
procurement cost 
function of each member 
i at timestamp t.

Objective function:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑡



𝑖

𝐶𝑜𝑠𝑡 𝑖, 𝑡 − 

𝑡

𝜋𝑖𝑛𝑐 𝑡 ⋅ 𝐸𝑠ℎ(𝑡)

Subject to:

• Constraints of each member, including binary variables.

• Shared energy definition:

𝐸𝑠ℎ 𝑡 = min  σ𝑖=1
𝑃 𝐸𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑖, 𝑡 ,  σ𝑖=1

𝑃 𝐸𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑛 𝑖, 𝑡  
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Centralised
problem:

MILP
(nonconvex)
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Issue: Centralised optimisation requires a community manager that:

• Collects all members’ relevant information (supply contracts, asset information, 
forecasts…) → Privacy concerns!

• Determines/enforces the schedule of their systems.
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Issue: Centralised optimisation requires a community manager that:

• Collects all members’ relevant information (supply contracts, asset information, 
forecasts…) → Privacy concerns!

• Determines/enforces the schedule of their systems.

Distributed optimisation techniques allow to split (decompose) an optimisation
problem in smaller, less complex optimisation problems.

In the paper, the Alternating Direction Method of Multipliers (ADMM) is used to 
decompose the EC centralised problem in:

• One subproblem for each member, the solution of which is iteratively coordinated.

• A master problem that computes the (economic) coordination signals.
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥 + 𝑔(𝑦)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝐴𝑥 + 𝐵𝑦 = 𝑐
 𝑥 ∈ 𝐷𝑥

 𝑦 ∈ 𝐷𝑦

𝑥 ∈ ℝn, y ∈ ℝm, A ∈ ℝp×n, 𝐵 ∈ ℝp×m, 𝑐 ∈ ℝp

Idea of ADMM: remove the constraint linking the variables of different agents.

Given a two-block optimisation problem:

(𝜆)
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Idea of ADMM: remove the constraint linking the variables of different agents.

Given a two-block optimisation problem:

(𝜆)

Constraint preventing the 
two functions to be 

optimized independently 

Constraints involving 
only variables of one 

block
Dual variable of 
the constraint
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+ 𝜆𝑇 𝐴𝑥 + 𝐵𝑦 − 𝑐 +
𝜌

2
𝐴𝑥 + 𝐵𝑦 − 𝑐 2𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥 + 𝑔(𝑦)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝐴𝑥 + 𝐵𝑦 = 𝑐
 𝑥 ∈ 𝐷𝑥

 𝑦 ∈ 𝐷𝑦

𝑥 ∈ ℝn, y ∈ ℝm, A ∈ ℝp×n, 𝐵 ∈ ℝp×m, 𝑐 ∈ ℝp

Idea of ADMM: remove the constraint linking the variables of different agents,
accounting for it with additional terms in the objective function.

Given a two-block optimisation problem:
Lagrangian 

relaxation term 
Quadratic penalty 

term
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The resulting function is called augmented Lagrangian:

𝐿𝜌 𝑥, 𝑦, 𝜆 = 𝑓 𝑥 + 𝑔 𝑦  + 𝜆𝑇 𝐴𝑥 + 𝐵𝑦 − 𝑐 +
𝝆

2
𝐴𝑥 + 𝐵𝑦 − 𝑐 2

Decomposition is obtained minimising the augmented Lagrangian iteratively in the 
direction of each block of primal variables. 
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• Performance of ADMM are very sensitive to the choice of the penalty parameter ρ
• For nonconvex problems, ADMM is not guaranteed to converge, and if it converges, it 

is not guaranteed to find the global optimal solution!
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Decomposition is obtained minimising the augmented Lagrangian iteratively in the 
direction of each block of primal variables. 

Issues:
• Performance of ADMM are very sensitive to the choice of the penalty parameter ρ
• For nonconvex problems, ADMM is not guaranteed to converge, and if it converges, it 

is not guaranteed to find the global optimal solution!

Research question: Since the Energy Community optimisation problem is a nonconvex:
• Does ADMM converge?
• If it converges, how close is the solution to the global optimum?
• What is the influence of the penalty parameter on the model’s performance?
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Test case study (fictional) – 24 hrs time horizon:
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(*) Load profiles for the apartments are the same used in: Zatti, M., et al. (2021). Energy communities design optimization in the Italian 
framework. Applied sciences, 11(11), 5218.

(*)
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Test case study (fictional) – 24 hrs time horizon:

Members’ flexibility sources: 

• Demand shift from consumers;

• Batteries connected to PV;

An application of distributed optimisation to energy communities in Italy

(*) Load profiles for the apartments are the same used in: Zatti, M., et al. (2021). Energy communities design optimization in the Italian 
framework. Applied sciences, 11(11), 5218.
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Case study: 
• Aggregated EC demand and production profiles (left axis);
• Electricity buy/sell prices (right axis). 
• N.B.: For the sake of simplicity, each member is subject to the same electricity prices. 
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Case study: 
• Aggregated EC demand and production profiles (left axis);
• Electricity buy/sell prices (right axis). 
• N.B.: For the sake of simplicity, each member is subject to the same electricity prices. 

Methodology note:

Centralised model 
solution is globally 
optimal → benchmark

for ADMM performance. 

Methodology
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Outcome
• ADMM converges only when ρ is large enough; the quality of the solution is “poor”.
• The higher the value of ρ, the worse the solution found.
• Convergence reached in 2-3 iterations.
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Penalty parameter ρ kept constant, i.e, it does not change during the iterative 
procedure (canonical ADMM formulation for convex problems):

Results
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Increase of ADMM O.F. 
value at convergence 

w.r.t. the global optimal 
solution
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Penalty paraemter ρ iteratively updated: in particular, multiplied by a factor α > 1 at 
each iteration k (increase can start after m initial iterations): 
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Outcome
• ADMM converges for any starting value of the penalty parameter ρ.
• The solution is closer to global optimum the smaller the initial value of ρ and the 

increase per iteration. 
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Solution closer to the global optimum mean the EC members’ schedule found by ADMM 
better approximates the schedule found with the centralized model!

Results

Example

ρ = 2, constant: 

• OF value +23.9 % w.r.t. 
centralised model          
(2 iterations).

ρ0 = 1e-3, multiplied by 1.5 
at each iteration: 

• OF value +2.1% w.r.t. 
centralised model        
(19 iterations).
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• Advantage: the distributed model allows each member to optimise the 
schedule of its energy assets autonomously, sharing only their grid 
import/export schedule.
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of distance from the global optimum, depends on the choice and possible 
update of the parameters of the algorithm. 
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• Advantage: the distributed model allows each member to optimise the 
schedule of its energy assets autonomously, sharing only their grid 
import/export schedule.

• Disadvantage: the quality of the local solution found with ADMM, in terms 
of distance from the global optimum, depends on the choice and possible 
update of the parameters of the algorithm. 

• Future improvements: (i) modelling participation of energy communities 
to local flexibility markets (though it requires reformulating ADMM by 
removing the additional constraints); (ii) modeling additional flexibility 
sources (e.g., EVs); (iii) focusing on solutions to asynchronous
subproblems behavior. 

Conclusions
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