

An application of distributed optimisation to energy communities in Italy

Authors: L. Saguatti¹, F. Bovera², M. Gabba¹, G. Martoriello¹, M. Zatti¹. **Affiliation**: ¹LEAP s.c.a r.l., ²Politecnico di Milano **Speaker**: L. Saguatti

An application of distributed optimisation to energy communities in Italy

Authors: L. Saguatti¹, F. Bovera², M. Gabba¹, G. Martoriello¹, M. Zatti¹.
 Affiliation: ¹LEAP s.c.a r.l., ²Politecnico di Milano
 Speaker: L. Saguatti

Outline

- Introduction
- Methodology
- Results and considerations
- Conclusions

Italian energy communities (EC) operation cost optimisation should account for the **incentive on shared energy** recognized by GSE to the EC (60-120 €/MWh).

Thus, optimising EC's operation cost requires **coordination of the members** equipped with flexible energy assets: the optimal schedule of the single member acting alone may not coincide with the optimum of the community.

Italian energy communities (EC) operation cost optimisation should account for the **incentive on shared energy** recognized by GSE to the EC (60-120 €/MWh).

Thus, optimising EC's operation cost requires **coordination of the members** equipped with flexible energy assets: the optimal schedule of the single member acting alone may not coincide with the optimum of the community.

Objective function:

minimize
$$\sum_{t} \sum_{i} Cost(i,t) - \sum_{t} \pi_{inc}(t) \cdot E_{sh}(t)$$

Subject to:

- Constraints of **each** member, including **binary variables**.
- Shared energy definition: $E_{sh}(t) = \min \left\{ \sum_{i=1}^{P} E_{injected}(i, t), \sum_{i=1}^{P} E_{withdrawn}(i, t) \right\}$

 $i = 1, ..., P \rightarrow \text{community}$ members.

 $t = 1,...,T \rightarrow$ timesteps of the optimization horizon.

Cost(i,t) = energy procurement cost function of each member *i* at timestamp *t*.

Italian energy community (EC) operation cost optimisation should account for the **incentive on shared energy** recognized by GSE to the EC (60-120 €/MWh).

Thus, optimising EC's operation cost requires **coordination of the members** equipped with flexible energy assets: the optimal schedule of the single member acting alone may not coincide with the optimum of the community.

Centralised problem: MILP (nonconvex)

minimize
$$\sum_{t} \sum_{i} Cost(i,t) - \sum_{t} \pi_{inc}(t) \cdot E_{sh}(t)$$

Subject to:

- Constraints of **each** member, including **binary variables**.
- **Shared energy** definition: $E_{sh}(t) = \min \left\{ \sum_{i=1}^{P} E_{injected}(i, t), \sum_{i=1}^{P} E_{withdrawn}(i, t) \right\}$

 $i = 1, \dots, P \rightarrow \text{community}$ members.

 $t = 1,...,T \rightarrow$ timesteps of the optimization horizon.

Cost(i,t) = energy procurement cost function of each member *i* at timestamp *t*.

1/11

Issue: Centralised optimisation requires a **community manager** that:

- Collects all members' relevant information (supply contracts, asset information, forecasts...) → Privacy concerns!
- Determines/enforces the schedule of their systems.

Issue: Centralised optimisation requires a **community manager** that:

- Collects all members' relevant information (supply contracts, asset information, forecasts...) → Privacy concerns!
- Determines/enforces the schedule of their systems.

Distributed optimisation techniques allow to **split** (decompose) an optimisation problem in smaller, less complex optimisation problems.

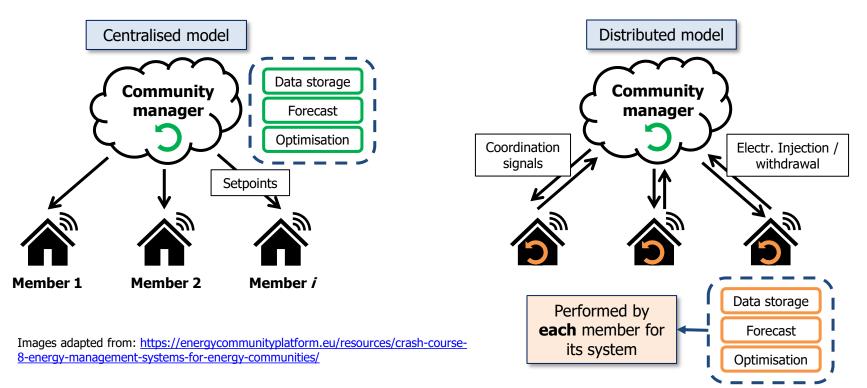
Issue: Centralised optimisation requires a **community manager** that:

- Collects all members' relevant information (supply contracts, asset information, forecasts...) → Privacy concerns!
- Determines/enforces the schedule of their systems.

Distributed optimisation techniques allow to **split** (decompose) an optimisation problem in smaller, less complex optimisation problems.

In the paper, the **Alternating Direction Method of Multipliers** (**ADMM**) is used to decompose the EC centralised problem in:

- One **subproblem for each member**, the solution of which is iteratively coordinated.
- A **master problem** that computes the (economic) coordination signals.



Idea of ADMM: remove the constraint linking the variables of different agents.

Given a two-block optimisation problem:

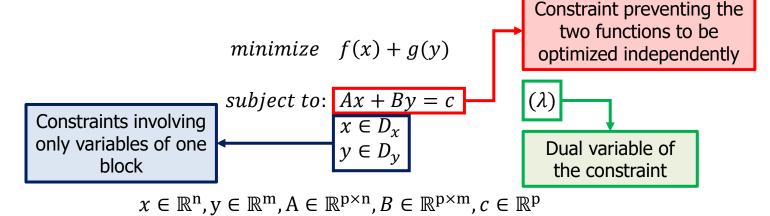
minimize
$$f(x) + g(y)$$

subject to: $Ax + By = c$ (λ)
 $x \in D_x$
 $y \in D_y$

 $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}, A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}, c \in \mathbb{R}^{p}$

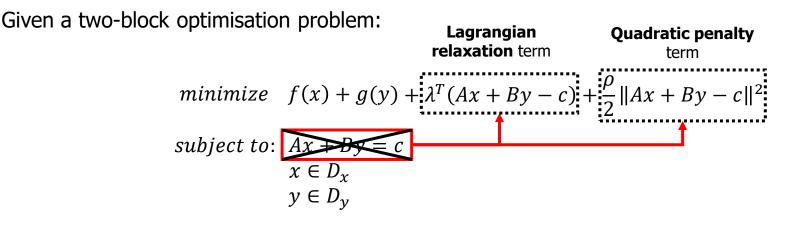
Idea of ADMM: remove the constraint linking the variables of different agents.

Given a two-block optimisation problem:



4/11

Idea of ADMM: <u>remove the constraint linking the variables of different agents</u>, accounting for it with **additional terms in the objective function**.



 $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}, A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}, c \in \mathbb{R}^{p}$

The resulting function is called **augmented Lagrangian**:

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + \frac{\rho}{2} ||Ax + By - c||^{2}$$

Decomposition is obtained minimising the augmented Lagrangian **iteratively** in the direction of each block of primal variables.

The resulting function is called **augmented Lagrangian**:

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + \frac{\rho}{2} ||Ax + By - c||^{2}$$

Decomposition is obtained minimising the augmented Lagrangian **iteratively** in the direction of each block of primal variables.

Issues:

- Performance of ADMM are very sensitive to the choice of the penalty parameter p
- For nonconvex problems, ADMM is not guaranteed to converge, and if it converges, it is not guaranteed to find the global optimal solution!

The resulting function is called **augmented Lagrangian**:

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + \frac{\rho}{2} ||Ax + By - c||^{2}$$

Decomposition is obtained minimising the augmented Lagrangian **iteratively** in the direction of each block of primal variables.

Issues:

- Performance of ADMM are very sensitive to the choice of the penalty parameter p
- For nonconvex problems, ADMM is not guaranteed to converge, and if it converges, it is not guaranteed to find the global optimal solution!

Research question: Since the Energy Community optimisation problem is a nonconvex:

- Does ADMM converge?
- If it converges, how close is the solution to the global optimum?
- What is the influence of the penalty parameter on the model's performance?

5/11

Test case study (fictional) – 24 hrs time horizon:

Condominium	1	2	3	4	5	6
N° of apartments	6	6	12	12	18	18
(*) Total apartments load [kWh]	48	49	106	96	156	142
Common areas load [kWh]	1.4	1.4	2.8	2.8	4.2	4.2
PV size [kWp]	6	8	13	10	16	15
Battery size [kWh]	8	10	15	11	22	19

(*) Load profiles for the apartments are the same used in: Zatti, M., et al. (2021). Energy communities design optimization in the Italian framework. Applied sciences, 11(11), 5218.

Test case study (fictional) – 24 hrs time horizon:

Condominium	1	2	3	4	5	6
N° of apartments	6	6	12	12	18	18
(*) Total apartments load [kWh]	48	49	106	96	156	142
Common areas load [kWh]	1.4	1.4	2.8	2.8	4.2	4.2
PV size [kWp]	6	8	13	10	16	15
Battery size [kWh]	8	10	15	11	22	19

Members' flexibility sources:

- **Demand shift** from consumers;
- Batteries connected to PV;

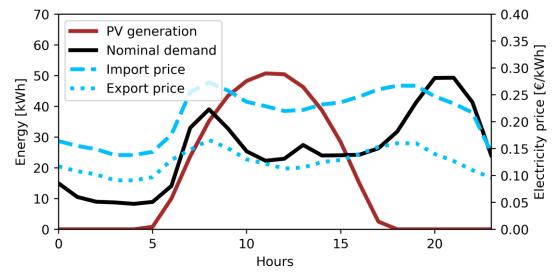
(*) Load profiles for the apartments are the same used in: Zatti, M., et al. (2021). Energy communities design optimization in the Italian framework. Applied sciences, 11(11), 5218.

An application of distributed optimisation to energy communities in Italy

6/11

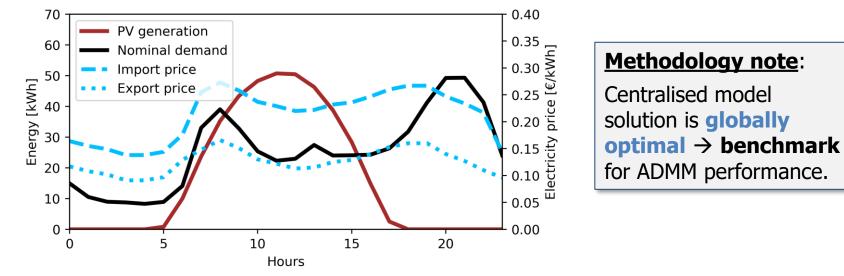
Case study:

- Aggregated EC **demand** and **production** profiles (left axis);
- Electricity buy/sell prices (right axis).
- **<u>N.B.</u>**: For the sake of simplicity, each member is subject to the same electricity prices.



Case study:

- Aggregated EC demand and production profiles (left axis);
- Electricity buy/sell prices (right axis).
- **<u>N.B.</u>**: For the sake of simplicity, each member is subject to the same electricity prices.



<u>Penalty parameter **p** kept **constant**</u>, i.e, it does not change during the iterative procedure (canonical ADMM formulation for convex problems):

Outcome

- ADMM converges **only** when ρ is large enough; the quality of the solution is "poor".
- The higher the value of ρ, the worse the solution found.
- Convergence reached in 2-3 iterations.

<u>Penalty parameter **p** kept **constant**</u>, i.e, it does not change during the iterative procedure (canonical ADMM formulation for convex problems):

Outcome

- ADMM converges **only** when ρ is large enough; the quality of the solution is "poor".
- The higher the value of ρ, the worse the solution found.
- Convergence reached in 2-3 iterations.

Results of the distributed model with constant $\rho.$

ρ	Objective function	Increase	
2	43.2 €	23.9 %	
3	44.2 €	26.8 %	
4	44.7 €	28.5 %	
5	45.1 €	29.6 %	

Increase of ADMM O.F. value at convergence w.r.t. the global optimal solution

<u>Penalty paraemter **p** iteratively updated</u>: in particular, multiplied by a factor a > 1 at each iteration *k* (increase can start after *m* initial iterations):

$$\rho^{k+1} = \alpha \cdot \rho^k \quad \forall k > m$$

<u>Outcome</u>

- ADMM converges for **any** starting value of the penalty parameter ρ.
- The solution is closer to global optimum the smaller the initial value of ρ and the increase per iteration.

<u>Penalty parameter **p** iteratively updated</u>: in particular, multiplied by a factor a > 1 at each iteration *k* (increase can start after *m* initial iterations):

$$\rho^{k+1} = \alpha \cdot \rho^k \quad \forall k > m$$

<u>Outcome</u>

- ADMM converges for **any** starting value of the penalty parameter ρ.
- The solution is closer to global optimum the smaller the initial value of ρ and the increase per iteration.

	$\alpha = 2$		$\alpha =$	= 1.5	$\alpha = 1.1$		
m = 0	Incr.	N° iter.	Incr.	N° iter.	Incr.	N° iter.	
$ \rho^0 = 0.1 $ $ \rho^0 = 0.01 $	7.3 % 3.3 %	8 12	5.6 % 2.1 %	12 19	1.9 % 1.1 %	53 77	

Solution **closer** to the global optimum mean the EC members' schedule found by ADMM **better approximates** the schedule found with the centralized model!

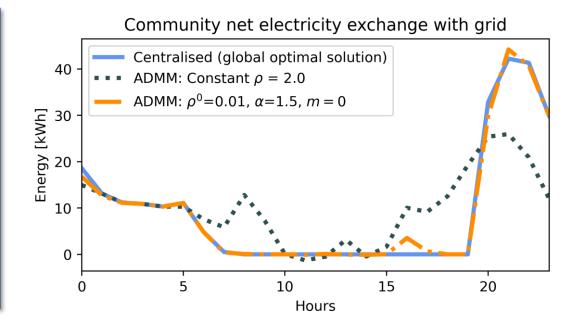
Example

 $\rho = 2$, constant:

 OF value +23.9 % w.r.t. centralised model (2 iterations).

 $p^0 = 1e-3$, multiplied by 1.5 at each iteration:

 OF value +2.1% w.r.t. centralised model (19 iterations).



10/11

Conclusions

• Advantage: the distributed model allows each member to optimise the schedule of its energy assets **autonomously**, sharing only their grid import/export schedule.

Conclusions

- <u>Advantage</u>: the distributed model allows each member to optimise the schedule of its energy assets **autonomously**, sharing only their grid import/export schedule.
- Disadvantage: the quality of the local solution found with ADMM, in terms of distance from the global optimum, depends on the choice and possible update of the parameters of the algorithm.

Conclusions

- <u>Advantage</u>: the distributed model allows each member to optimise the schedule of its energy assets **autonomously**, sharing only their grid import/export schedule.
- <u>Disadvantage</u>: the quality of the local solution found with ADMM, in terms of distance from the global optimum, depends on the **choice** and possible **update** of the parameters of the algorithm.
- Future improvements: (i) modelling participation of energy communities to local flexibility markets (though it requires reformulating ADMM by removing the additional constraints); (ii) modeling additional flexibility sources (e.g., EVs); (iii) focusing on solutions to asynchronous subproblems behavior.

An application of distributed optimisation to energy communities in Italy

Thank you for your attention!

Speaker: <u>L. Saguatti</u> Contact email: <u>lorenzo.saguatti@polimi.it</u>

This work was supported by the project PIAC(ER)2 (CUP: E37G22000560007), co-funded by Regione Emilia-Romagna through the European Regional Development Fund PR-FESR 2021-2027.